
UNIVERSITY OF BIO-BIO
FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

TECHNICAL REPORT FOR PROJECT ANILLO
ACT 210087

STATE OF THE ART AND PHYSICAL MODELS
FOR THE DESALINATION PROCESS

BY

Nicolás Emilio Carro Aceituno

Project Director
Dr Ricardo Oyarzúa

Project Codirector
Dr. Verónica Anaya

Abril 2022
Concepción (Chile)

©2021, Nicolás Emilio Carro Aceituno



2

Summary
This document synthesises the basic aspects of two of the most promising desalination process, as
well as the State of the Art (SoA) for the development of new technologies associated with the process
energetic and productive efficiency and the different models used for Computational Fluid Dynamics
(CFD) at the project Anillo ACT 210087.

Because the details and engineering aspects of each process are different, the present document
is divided in various chapters corresponding to the different desalination methods and some of the
common topics among the processes. The internal structure of each chapter will be similar: first, the
process will be defined; second, the technical and physical-chemical aspects of the processs will be
given, and finally the transport equations and boundary conditions for several models considered in
this study will be presented.



Chapter 1

Transport Phenomena

This chapter condenses all the relevant equations of transport used to represent the desalination
process along with the boundary conditions for each field. All of our derivations are balances of
certain quantities over a generalized control volume such as the one shown in Figure 1.1.

Figure 1.1: Graphical representation of an arbitrarily shaped control volume.

1.1 shows an arbitrarily fixed volume called Ω with an arbitrarily fixed control surface Γ evolving
in time and space. The normal vectors n are defined as perpendicular and directed outward the
control surface.

The governing equations of a system (let it be energy, mass, etc.) are focused on describing the
evolution of its constituents (namely a single or collective of mass particles) along its time-space
trajectory. This Lagrangian approach is computationally intensive for complex systems as it requires
not only to store the coordinates and velocities of each system particle and evaluate its interactions,
but also the coordinates of the discretization volumes that enclose each particle (a task not easily
done for fluid systems). However we could, instead of focalizing in what happens to a certain system,
describe what happens inside the volume that encloses the system, called the domain. This allows
for an easier way of discretizing and evaluating numerically the equations involved in the system.
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4 CHAPTER 1. TRANSPORT PHENOMENA

Figure 1.2: Comparison betwenn the Lagrangian and Eulerian approach. Source: Shadloo et al.
(2016)

This method requires the conversion of the description of the properties from a particle centered
analysis (Lagrangian approach) to a control volume analysis (Eulerian approach). In the following
section, we present a theorem that allows us to accomplish such a task: Reynold’s Transport Theorem.

1.1 Reynold’s Transport Theorem (RTT)
Let us consider an extensive general property B (could be a scalar or vector) which characterizes the
system under study, contained within a volume Ω and surface Γ as shown in Figure 1.1. The intensive
property of B is β = β(r, t), i.e, the amount of the property B per unit mass in any small element
of the control volume. If the density of any element in the control volume is ρ = ρ(r, t), then the
relation between intensive and extensive property inside the control volume is:

B =

∫
Ω

βdm

=

∫
Ω

βρdr (1.1)

Then,

β =
dB

dm
(1.2)

The changes of B in the control volume then can occur from:

• A change of β within the control volume

d

dt

(∫
Ω

βρdr

)
(1.3)

• A rate of β leaving the volume∫
Γ

βρuout cos θoutdSout =

∫
Γout

βρ (u · n) dS (1.4)

• A rate of β entering the volume∫
Γ

βρuin cos θindSin =

∫
Γin

βρ (−u · n) dS (1.5)

The minus sign appearing in the inlet term are due to the opposing definitions of u and n at the inlet:
where a normal vector pointing outwards is positive, the entering velocity has the opposite direction.
Then, if we take the limit where the change is infinitesimal dt → 0, then the intantaneous change in
B of the system is the change within, plus the leaving flow, minus the entering flow (as leaving flow
has opposite direction of normal vector):

dBsys

dt
=

d

dt

(∫
Ω

βρdr

)
+

∫
Γout

βρ (u · n) dS −
∫
Γin

βρ (−u · n) dS (1.6)
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If we consider that Γ = Γin ∪ Γout, then we arrive at the final version of RTT for a fixed arbitrary
control volume:

dBsys

dt
=

d

dt

(∫
Ω

βρdr

)
+

∫
Γ

βρ (u · n) dS (1.7)

For a volume moving at a velocity us = us(r, t), the RTT becomes

dBsys

dt
=

d

dt

(∫
Ω

βρdr

)
+

∫
Γ

βρ (ur · n) dS (1.8)

where ur = u− us is the relative velocity of the fluid with respect the volume reference.

1.2 Continuity Equation

1.2.1 Derivation
The continuity equation is the conservation of mass of a system over time. Then, if we define
Bsys = m, β = 1. The conservation of mass implies that the change of the mass of the system is
equal to the generation of mass minus its consumption, representing any reaction or process that
generates or consumes mass (e.g. nuclear reactions, physical removal of mass, etc.). If we group both
source terms per unit volume as a unique term Sm, it follows that:

dBsys

dt
=

∫
Ω

Smdr (1.9)

Then, replacing equation 1.8 in equation 1.2.1, we arrive at:

d

dt

(∫
Ω

ρdr

)
+

∫
Γ

ρ (ur · n) dS =

∫
Ω

Smdr (1.10)

Applying the Gauss divergence theorem to the surface integral in equation 1.10, we arrive at

d

dt

(∫
Ω

ρdr

)
+

∫
Ω

div (ρur) dr =

∫
Ω

Smdr (1.11)

If we consider a fixed and stationary (ur = u) control volume, the equation con be written as:∫
Ω

ρtdr +

∫
Ω

div (ρu) dr =

∫
Ω

Smdr (1.12)

Where ρt = dρ
dt . Finally, grouping the integrals into one and recognizing that for the equation to be

valid the whole integrand must be zero, we arrive at the continuity equation:

ρt + div (ρu) = Sm (1.13)

If there is no nuclear reactions occuring or any physical removal of mass (that isn’t convective),
Sm = 0. Then, we have the classic continuity equation:

ρt + div (ρu) = 0 (1.14)

1.2.2 Formulations
Considering the general case where the medium density is defined as dependent on the field variables
P (pressure), T (temperature) and Ci (concentration of each of the i species in the fluid) ρ∗ =
ρ∗ (t, T, P, Ci), the formulation is:

ρ∗,t + div (ρ∗u∗) = 0 ∗ inΩ∗ (1.15)

For a isotropic porous medium (a domain which is porous, and its porosity ε∗ is constant and the
same in all directions), the velocity u is replaced by an apparent velocity u∗/ε∗, giving place to:

ρ∗,t + div
(
ρ∗

u∗

ε∗

)
= 0 ∗ inΩ∗ (1.16)
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If we consider the steady state (i.e., the calculated fields like density don’t change with time anymore,
or ρt = 0), equation 1.15 reduces to:

div (ρ∗u∗) = 0 ∗ inΩ∗ (1.17)

And equation 1.16 reduces to:

div
(
ρ∗

u∗

ε∗

)
= 0 ∗ inΩ∗ (1.18)

If we further consider that the fluid is incompressible (i.e. the density is independent of other fields
and has a constant value), then equation 1.17 reduces to:

div (u∗) = 0 ∗ inΩ∗ (1.19)

For a medium with constant porosity and incompressible fluid, equation 1.19 also reduces to equation
1.18.

1.3 Momentum Equation

For the momentum equation we start with Newton’s Second Law, which is essentially a balance of
forces acting over a system. Mathematically, for a system of momentum (mu)sys and forces acting
over it Fi, i = 1, ...,∞, we have:

d

dt
(mu)sys =

∑
i

F i (1.20)

Here, the forces acting over the system can be of different nature, e.g. gravitational, electromagnetic,
etc. If we consider that the extensive quantity is the momentum B = mu (and therefore β = u) a
fixed and stationary control volume, applying the RTT yields∫

Ω

(ρu)t dr +

∫
Γ

ρu (u · n) dS =
∑
i

F i (1.21)

Applying the asociative product rule, we can rewrite the previous expression as:∫
Ω

(ρu)t dr +

∫
Γ

(ρu⊗ u) · ndS =
∑
i

F i (1.22)

Using the divergence theorem on the surface integral and combining the terms in the left hand side,
we arrive at: ∫

Ω

((ρu)t + div (ρu⊗ u)) dr =
∑
i

F i (1.23)

Which is the momentum balance for a fixed and stationary control volume. The different equations
of momentum depend on the terms considered in the right hand side of the equation.

1.3.1 Derivation: Navier-Stokes

The Navier-Stokes equations are used to model the behavior of a fluid subject to two main forces:
viscous momentum diffusion, external pressures exerted over the volume, and gravitational forces.
We can include said forces as an integral over the surface of the domain:∑

i

F i =
∑
i

∫
Γ

∂F i

∂S
· ndS +

∑
j

∫
Ω

∂F j

∂r
dr (1.24)

Where the first term at the right hand side of equation 1.24 sums all forces that act on the control
volume surface Γ, the second term sums all forces acting on the whole control volume due to external
fields being applied (e.g. gravity or magnetic), ∂F i

∂S is the force per unit area tensor applied to the
control volume boundary Γ, and ∂F j

∂r is the force per unite volume vector due to external fiedls applied
to the fluid in Ω. This term has two components, a normal hydrostatic pressure term representing
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external pressures applied to the volume, and a viscous stress tensor τ responsible to represent the
momentum losses due to the molecular friction of the fluid:

∂F i

∂S
= −PI − τ (1.25)

In the cases studied in this work, the only present field is gravity, so we have:

∂F j

∂r
= ρg (1.26)

Replacing equations 1.24 and 1.26 in equation 1.24, we arrive at:∑
i

F i =

∫
Γ

(−pI − τ ) · ndS +

∫
Ω

ρgdr (1.27)

Once more, we apply the divergence theorem to the surface integral, and we merge the resulting
volume integrals: ∑

i

F i =

∫
Ω

(div (−pI − τ ) + ρg) dr

=

∫
Ω

(−∇p+ div (−τ ) + ρg) dr (1.28)

Now we can merge expressions 1.23 and 1.28, arriving at∫
Ω

((ρu)t + div (ρu⊗ u) +∇P − div (−τ )− ρg) dr = 0 (1.29)

As the integral equal to zero requires that its integrand is zero, we arrive at Cauchy’s equation:

(ρu)t + div (ρu⊗ u) = −∇P − div (τ ) + ρg (1.30)

The last step is to use a relationship between tensor and the velocity and/or its moments. For a
Newtonian fluid where there is a linear relation between the stress tensor and the velocity gradients:

τ = −µ
(
∇u+∇uT

)
+

(
2

3
µ− κ

)
div (u) I (1.31)

Applying the Stokes hypothesis, 2
3µ− κ = 0:

τ = µ
(
∇u+∇uT

)
(1.32)

Then, the Navier-Stokes equation is:

(ρu)t + div (ρu⊗ u) = −∇P + div
(
µ
(
∇u+∇uT

))
+ ρg (1.33)

If the fluid is incompressible, the system reduces to:

ut + div (u⊗ u) = −∇
(
P

ρ

)
+ div

(
µ

ρ

(
∇u+∇uT

))
+ g (1.34)

If we define the gauge pressure as p = P − ρg, we can rewrite the equation as:

ut + div (u⊗ u) = −∇
(
p

ρ

)
+ div

(
µ

ρ

(
∇u+∇uT

))
(1.35)

1.3.2 Derivation: Darcy-Forchheimer
The Darcy-Forchheimer equation is the inclusion of both Darcy’s law and Forchheimer equation in
the Navier-Stokes equations to model the pressure drop in an isotropic porous meida:

∇pdarcy = − µ

K
u (1.36)



8 CHAPTER 1. TRANSPORT PHENOMENA

∇pforchheimer = −Cfrc√
K

|u|u (1.37)

Considering that the total pressure drop on the volume is the sum of the porous media pressure p,
the Darcy pressure pdarcy and the Forchheimer pressure pforchheimer contributions:

∇ptotal = ∇p+∇pdarcy +∇pforchheimer (1.38)

Also, the true velocity for the transient, convective and diffusive terms need to account the porosity
ε of the medium. Replacing both of these assumptions, we arrive at:

(
ρ
u

ε

)
t
+ div

(
ρ
u

ε
⊗ u

ε

)
= −∇P + div

(
µ

(
∇u

ε
+∇u

ε

T
))

− µ

K
u− Cfrc√

K
|u|u+ ρg (1.39)

Note that the true velocity isn’t used on the Darcy and Forchheimer terms, since these expressions
already account the porosity of the medium. If we consider an incompressible fluid and the definition
of the gauge pressure, we arrive at:

(u
ε

)
t
+ div

(u
ε
⊗ u

ε

)
= −∇

(
p

ρ

)
+ div

(
µ

ρ

(
∇u

ε
+∇u

ε

T
))

− µ

ρK
u− Cfrc

ρ
√
K

|u|u (1.40)

1.4 Momentum: Boundary Conditions

1.4.1 No-slip boundary

The no slip-condition often is applied when the boundary is a wall in contact with the fluid. The
physical meaning of this Dirichlet-type condition is the following: as the fluid molecules and the wall
molecules interact, when the attractive forces between them outweigh the tangential stress applied
by the fluid flow, the fluid molecules tend to "stick" to the wall, therefore diminishing its velocity to
zero. The boundary is written as:

u∗ = 0 in Γ∗ (1.41)

This condition holds for walls whose material is wetted by the fluid that flows on them.

1.4.2 Slip boundary

In some cases, the no-slip condition doesn’t hold for all surfaces, as the pore presence (Beavers &
Joseph, 1967) and the hydrophobicty of the surface tends to form a molecular floating film that
reduces the shear stress of the fluid on the wall. Therefore the fluid slips on the surface, as if it were
gliding across an icy surface.

Then, the boundary condition is given by:

u∗ = Lslip · (n · ∇u) in Γ∗ (1.42)

Where Lslip is the slip length vector for each coordinate, that can be interpreted as a displacement
length of the zero velocity from the wall.

1.4.3 Set velocity profile boundary

For a fluid entering a domain, one can specify a value (or the complete inlet profile) if it is known.
This corresponds then to a Dirichlet type boundary condition, and its written as:

u∗ = U (r, t) in Γ∗ (1.43)

Where U is the know velocity vector field at the boundary.
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1.4.4 Set pressure boundary
Given an specified outlet pressure Pout, if we make a force balance on the boundary surface to obtain
the pressure at the boundary,(

−P∗I + µ
(
∇u∗ +∇uT

∗
)
− 2

3
µ (divu∗) I

)
· n = −Poutn in Γ∗ (1.44)

Note that the above formulation is valid for single-phase flows. For incompressible flows, the
previous expression reduces to:(

−P∗I + µ
(
∇u∗ +∇uT

∗
))

· n = −Poutn in Γ∗ (1.45)

1.4.5 Reverse osmosis membrane boundary
When considering the membrane as a surface, a widely used model is the solution-diffussion model,
which considers the water to "dissolve" in the membrane helped by the hydrogen bonds between
water molecules and the membrane material, whilst blocking the passage of bigger salt ions. Lets
consider the domain which contains the salt water as Ω, and the domain which contains the pure
water as Ωp.
Mathematically, the permeate flow for this model is expressed as an interface condition:

uf · n = up · n (1.46)
uf · n = A(pf − pp − iR(TfCf − TpCp)) (1.47)

Where A is the membrane’s water permeability, i is the number of ions that the salt dissociates into,
R is the real gas constant, and C refers to the molar concentration of salt. If the experiment is
conducted isothermically, then the condition can be written as

uf · n = up · n (1.48)
uf · n = A(pf − pp − iRT (Cf − Cp)) (1.49)

As in reverse osmosis the pressures are high, the pressures changes inside either channel are low in
comparison. Then, if we consider that the effect of this pressure change on the permeate flux is
negligible, we can further simplify the expression as:

uf · n = up · n (1.50)
uf · n = A(∆p− iRT (Cf − Cp)) (1.51)

Where ∆p = pf,in − pp,in is the transmembrane pressure. One last approximation is to neglect the
permeate effects on the permeate flux, as Cp ∼ 0. Additionally, we have to specify the tangential
component of the velocity to give it closure (Kucera, 2015):

uf · n = A(∆p− iRTCf ) (1.52)
uf · t = 0 (1.53)

1.4.6 Porous membrane interface boundary

1.5 Turbulence Equations
Turbulence is a phenomena in which the fluid flow acts random and irregular. Of course, this chaotic
nature makes it a naturally unsteady process. To locate at which velocity the system will experience
turbulence, Reynolds (1883) INSERT introduced its number Re that upon reaching a critical value
would indicate the transition of laminar to turbulent flow.
Richardson (1922) INSERT described turbulence as an erratic process in which, at a high enough
velocity, turbulent swirls ("eddies") of all sizes begin to destabilize between them, and break down
to the smallest scale possible to them, forming an eddie breakdown cascade downstream. Each eddy
would have its own length, velocity and time scales, and the energy transfer would occur from the
larger to the smaller eddies, until at the smallest eddy scale possible, energy would be dissipated
as internal energy. Kolmogorov (1941) INSERT quantified the scale values at which the energy
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dissipation would occur, assuming that anisotropy is lost along the eddy breakdown and the smaller
eddies can be considered statistically isotropic. Additionaly, the forces dominating in this scale
are considered mainly viscous, characterized by a molecular kinematic viscosity ν and an energy
dissipation rate ϵ. Then, Kolmogorov’s length, velocity and time scales η, uη and τη are, respectively:

η =

(
ν3

ϵ

)1/4

(1.54)

uη = (νϵ)
1/4 (1.55)

τη =
(ν
ϵ

)1/2
(1.56)

On the other side of the scale spectrum, Kolmogorov assumed that at high enough Re there is a
range of scales where the eddy breakdown is inviscidm and transfer energy to smaller eddies at a
constant rate that is proportional to the larger scales. In this section, we will explain the reason why
turbulence models are often used instead of the Navier-Stokes exact treatment of the equations as
well as derive the set of equations for this, to then present the boundary conditions normally used
for the turbulent equations.
The previous momentum equations are valid for all velocity ranges. However, there are two disad-
vantages that prevents us of using these:

• As the turbulence phenomena has a minimum scale length at which energy dissipates, even for
large systems whose scales are kilometers, the scale is in the order of millimeters. Therefore, to
model the turbulent scale at an adequate resolution, taking into account small length scales is
needed.

• The iterative procedure requires that the time step advances at a reasonable pace, relying on
the Courant number (Co) as an indicator:

Co =
∑
i

Ui∆t

∆xi
(1.57)

Where Ui is the flow velocity in the i direction, ∆t is the time step, and ∆xi is the characteristic
length time of the cell in the i direction. The ideal condition is Co ∼ 1, but as seen in the equa-
tion, to model higher velocities requires smaller time steps, which requires more computational
effort.

Taking into account the previous indications to model turbulence using Navier-Stokes equation results
in an unreal number of volume elements to be tracked over a huge amount of time steps, which is
computationally unfeasible. There are different ways to solve this, but in this report we only use the
Reynolds Averaged Navier-Stokes (RANS) equations, more specifically, a second-order approximation
of these, called the κ− ϵ model.

1.5.1 Derivation: κ− ϵ model
The first step into deriving the equations is to obtain the main expression for the RANS model. As
its name suggests, it stems from averaging the Navier-Stokes and Continuity equations, and its main
equation is due to the decomposition of the velocity and pressure into two parts: a time-averaged
mean term ū, P̄ , and a fluctuating term u′. This separation is known as Reynolds Decomposition:

u = ū+ u′ (1.58)

If we define the time average ⟨u⟩t as

ū = ⟨u⟩t = lim
T→∞

1

T

∫ t+T

t

u(x, t)dt (1.59)

then
ū = ¯̄u → ū′ = 0 (1.60)

INSERT FIGURE
The thermophysical properties (density and viscosity) can also be decomposed into average and
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fluctuating terms. However, additional closure relations for each new fluctuating term would be
required. However, for weakly compressible fluids we can consider that its value is the average (i.e.,
the fluctuations in density and viscosity due to local turbulence are negligible):

ρ(x, t) = ρ̄(x, t) (1.61)
µ(x, t) = µ̄(x, t) (1.62)

From now on, we will use the symbol without the bar for both properties. Now, if we take Equation
1.14 and use it together with Equation 1.58, time-average it and rearrange it:

ρt + div (ρ(ū+ u′)) = 0 → ρ̄t + div (ρ(ū+ u′)) = 0

→ ρt + div
(
ρ(ū+ u′)

)
= 0

→ ρt + div (ρū) = 0 (1.63)

In the second line of the equation, the distributive property of the divergence and in the third line,
the properties in equation 1.60 were used. As it can be seen, the continuity equation mantains the
same form as its original counterpart. In the case of the Navier-Stokes equations, we proceed in a
similar way: we time average Equation 1.33, and obtain:

(ρu)t + div(ρu⊗ u) = −∇P + div(µ (∇u+∇uT )) + ρg (1.64)

Let’s see each term:

(ρu)t =
(
ρ(ū+ ū′)

)
t

=
(
ρ(¯̄u+ ū′)

)
t

= (ρū)t (1.65)

div(ρu⊗ u) = div
(
ρ(u⊗ u)

)
= div

(
ρ(ū⊗ ū+ ū⊗ u′ + u′ ⊗ ū+ u′ ⊗ u′)

)
= div

(
ρ(ū⊗ ū+ ū⊗ u′ + u′ ⊗ ū+ u′ ⊗ u′)

)
= div (ρ(ū⊗ ū)) + div

(
ρ(u′ ⊗ u′)

)
(1.66)

div(µ (∇u+∇uT )) = div
(
µ(∇u+∇uT )

)
= div

(
µ
(
∇u+∇u

T
))

= div
(
µ
(
∇u+∇uT

))
(1.67)

−∇P = −∇P (1.68)

Replacing the above expressions on Equation 1.64,

(ρū)t + div (ρ(ū⊗ ū)) + div
(
ρ(u′ ⊗ u′)

)
= −∇P + div

(
µ
(
∇u+∇uT

))
+ ρg (1.69)

Equation 1.69 is the formal equation of RANS. As it can be seen, it is almost the same as Equation
1.33 but an additional advective term appears due to the Reynolds decomposition. This extra term
represents the turbulent advection. A common approximation to this term is separate its contributions
into an isotropic advective term dependent on the turbulent kinetic energy κ, and a deviatronic term
that still needs to be taken care of:

ū⊗ ū =
2

3
κI +Rdev

Rdev = ū⊗ ū− 2

3
κI (1.70)

A common way of treating the deviatronic term is to assume that it behaves similar to the Newtonian
fluid viscous term, but with an associated turbulent viscosity µt. This is known as the Bousinnesq
hypothesis:

ρRdev = −µt(∇u+∇uT ) (1.71)
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Inserting Equation 1.71 in Equation 1.69,

(ρū)t + div (ρ(ū⊗ ū)) = −∇P + div
(
(µ+ µt)

(
∇u+∇uT

))
+

2

3
ρκI + ρg (1.72)

Defining the pressure here as P̄tr = P̄ + 2
3κ, we arrive at the RANS equation:

(ρū)t + div (ρ(ū⊗ ū)) = −∇P tr + div
(
(µ+ µt(κ, ϵ))

(
∇u+∇uT

))
+ ρg (1.73)

µt(κ, ϵ) = ρCµ
κ2

ϵ
(1.74)

In Equation 1.73, the dependence of µt is established: according to the model, the dependence is
on both the turbulent kinetic energy κ (not to be confused with the kinetic energy κ used in the
following section), and the turbulent dissipative energy ϵ, both defined as

κ =
1

2
u′ · u′ (1.75)

ϵ = ν|∇u′|2 (1.76)

Both definitions introduce new variables that need additional equations to be solved. For the κ − ϵ
model, this involves two additional partial differential equations, one for each new variable. Normally
the procedure to derive the respective equations, we start with the partial differential equations of
the variables κ = 1

2u · u and ϵ = ν|∇u|2 (which can be derived from the Navier-Stokes equations,
as will be demonstrated for κ in the following section) and proceed exactly like it was done with the
RANS equation: time average the equations, and separate the mean and variable terms.
Since the averaging procedure generates a new variable that needs to be known for the system to have
closure, this process can be repeated as many times as desired, but this model focuses on the first
two orders of approximation, closing the expression for the ϵ differential equation. The goal of this
chapter is not to derive these equations as there are long and tedious to obtain. The final expression
for both differential equations that close the model are:

(ρκ)t + ū · ∇(ρκ) = div
((

µ+
µt(κ, ϵ)

σk

)
∇κ
)
+ Pκ − ρϵ (1.77)

(ρϵ)t + ū · ∇(ρϵ) = div
((

µ+
µt(κ, ϵ)

σk

)
∇ϵ
)
+
C1ϵ

κ
Pκ − C2

κ2
ρϵ2 (1.78)

Pκ = µt(κ, ϵ)

(
∇u : (∇u+∇ut)− 2

3
(div(ū))2

)
− 2

3
ρκdiv(ū) (1.79)

1.6 Turbulence: Boundary Conditions

1.6.1 Inlet boundary
For the inlet, the boundary conditions are Dirichlet-type functions:

a (1.80)
a (1.81)

Normally, depending on the type of inlet flow, there are different functions. In the case of a developed
tubulent flow on a pipe, the functions are:

1.6.2 Free-flow boundary
When a fluid has developed its flow enough, the change in dissipative and kinetic energy due to
turbulence remains constant. Then, the boundary conditions can be written as a von-Neumann type
boundary:

∇κ · n = 0 (1.82)
∇ϵ · n = 0 (1.83)

Where k is the thermal conductivity.
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1.6.3 Wall boundary
law of the wall

1.7 Heat Equation

1.7.1 Derivation
The heat equation starts with the conservation of energy for a system. From the first law of thermo-
dynamics for a system, we have:

dEsys = dW + dQ (1.84)

Where Esys is the energy of the system, W is the work done over the system at the boundaries, and Q
is the heat that enters the system through the boundaries. Taking the time derivative of the system,

dEsys

dt
=
dW

dt
+
dQ

dt
= Ẇ + Q̇ (1.85)

Identifying the observed variable as B = E with its respective intensive variable β = e = dE/dm or
energy per unit mass, we can apply RTT to the left side of the equation, arriving at the balance for
the specific volume of Figure 1:

d

dt

(∫
Ω

eρdr

)
+

∫
Γ

eρ (u · n) dS = Ẇ + Q̇ (1.86)

The energy is composed of several contributions:

e = einternal + ekinetic + epotential + eother (1.87)

Considering only the three first terms in the previous equation and replacing the corresponding
expressions for each contribution,

e = û+
1

2
(u · u) + g · r = û+ κ+ ep (1.88)

For the work done on the fluid, we have two contributions for a fluid moving in a system without
mechanical parts impulsating them: the work done by pressure forces over Γ and the work due to
viscous stresses over Γ, denoted Ẇp and Ẇv:

Ẇ = Ẇp + Ẇv (1.89)

Taking the work differential for Ẇp,

dẆp = F · dx
dt

= −PdS · u
= −P (u · n)dS
= −P (u · n)dS (1.90)

In the first equation, the definition of work is used. In the second equation, the differential relation
between the pressure and the force is applied. Integrating the expression over Γ,

Ẇp = −
∫
Γ

P (u · n)dS (1.91)

The viscous stress Ẇv we have the following relation:

Ẇv = −
∫
Γ

(τ · u) · ndS (1.92)

In case of the transported heat at Γ, we first write it in terms of the heat flux per unit area q

Q̇ =

∫
Γ

−q · dS

= −
∫
Γ

q · ndS (1.93)
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Then, if the fluid (or solid) in the system has a linear dependence between q and ∇T , we can use
Fourier’s Law:

q = −k∇T (1.94)

Then, we can replace the obtained expressions on the energy balance:

d

dt

(∫
Ω

eρdr

)
+

∫
Γ

eρ (u · n) dS = −
∫
Γ

P (u · n)dS −
∫
Γ

(τ · u) · ndS −
∫
Γ

q · ndS (1.95)

Using the divergence theorem on the surface integrals,

d

dt

(∫
Ω

eρdr

)
+

∫
Ω

div (ρeu) dr = −
∫
Ω

div (Pu) dr −
∫
Ω

div(τ · u)dr −
∫
Ω

div (−k∇T ) dr (1.96)

Considering a fixed control volume and using the divergence theorem on the surface integrals,∫
Ω

(eρ)tdr +

∫
Ω

div (ρeu) dr

= −
∫
Ω

div (Pu) dr −
∫
Ω

div(τ · u)dr −
∫
Ω

div (−k∇T ) dr (1.97)

Replacing e in the equations, we arrive at,∫
Ω

((û+ κ+ ep)ρ)tdr +

∫
Ω

div (ρ(û+ κ+ ep)u) dr

= −
∫
Ω

div (Pu) dr −
∫
Ω

div(τ · u)dr −
∫
Ω

div (−k∇T ) dr (1.98)

Separating the kinetic and potential energy terms, we obtain∫
Ω

(ûρ)tdr +

∫
Ω

div (ρûu) dr +

∫
Ω

div (Pu) dr

= −
∫
Ω

div(τ )dr −
∫
Ω

div (−k∇T ) dr −
∫
Ω

((ρκ)t + div (ρκu)) dr −
∫
Ω

((ρep)t + div (ρepu)) dr

(1.99)

Here, we introduce two definitions: the enthalpy ĥ and the energy source term Sκ:

ĥ = û+
P

ρ

Se = (ρκ)t + div (ρκu) + (ρep)t + div (ρepu)
= (ρκ)t + div (ρκu) + ρtep + ρep,t + ρu∇(ep) + epdiv(ρu)
= (ρκ)t + div (ρκu) + (ρt + div(ρu))ep + ρep,t + ρu · ∇(ep)

= (ρκ)t + div (ρκu) + ρ(g · r)t + ρu · ∇(g · r)
= (ρκ)t + div (ρκu) + ρg · u+ ρu · g

(1.100)

Replacing the definitions, we arrive at: ∫
Ω

(ûρ)tdr +

∫
Ω

div
(
ρuĥ

)
dr

= −
∫
Ω

div(τ · u)dr +

∫
Ω

div (k∇T ) dr −
∫
Ω

Sedr (1.101)

Or,
(ûρ)t + div

(
ρuĥ

)
= −div(τ · u) + div (k∇T )− Se (1.102)

To obtain an expression for Se, we need an equation that describes the evolution of the new variable
κ. This equation can be derived from the momentum balance as we will show. First, lets us recast
the equation into a different form for mathematical convenience:

ρtu+ ρut + div (ρu)u+ (ρu · ∇)u = −∇P − div (τ ) + ρg (1.103)
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The only operation done was to expand the transient and the advective terms. Grouping similar
terms, we arrive at:

(ρt + div (ρu))u+ ρut + (ρu · ∇)u = −∇P − div (τ ) + ρg (1.104)

As the first term in parenthesis is zero due to the continuity equation, we arrive at the equivalent
form of the momentum equation:

ρut + (ρu · ∇)u = −∇P − div (τ ) + ρg (1.105)

If we multiply the whole equation by u, we have:

u · ρut + u · (ρu · ∇)u = −u · ∇P − u · div (τ ) + u · ρg (1.106)

Noting that:

(ρκ)t =

(
ρ
(u · u)

2

)
t

=
1

2
(ρ(u · u)t + ρt(u · u))

=
1

2
(2ρu · ut + ρt(u · u))

= ρu · ut + ρt

(u · u
2

)
= ρu · ut + ρtκ

= ρu · ut + (−div(ρu))κ
→ ρu · ut = (ρκ)t + div(ρu)κ (1.107)

As well as:

(ρu · ∇)(u · u) = [(ρu · ∇)u] · u+ u · [(ρu · ∇)u]

= 2u · (ρu · ∇)u

→ u · (ρu · ∇)u = (ρu · ∇)
(u · u

2

)
= (ρu · ∇)κ (1.108)

Then, we can write the momentum balance as:

(ρκ)t + div(ρu)κ+ (ρu · ∇)κ = −u · ∇P − u · div (τ ) + u · ρg (1.109)

Or
(ρκ)t + div(ρuκ) = −u · ∇P − u · div (τ ) + u · ρg (1.110)

We can also state that:

div(τ · u) = τ : ∇u+ u · div(τ )
= Φ + u · div(τ )
= Φ− (ρκ)t − div(ρuκ)− u · ∇P + u · ρg
= Φ− Se − u · ∇P (1.111)

Where Φ is defined as the viscous dissipation function. Finally, we obtain the general heat equation:

(ûρ)t + div
(
ρuĥ

)
= u · ∇P + div (k∇T )− Φ (1.112)

We can further replace the internal energy with the enthalpy definition, and obtain a expression only
dependent on the enthalpy:

(ĥρ)t + div
(
ρuĥ

)
= Pt + u · ∇P + div (k∇T )− Φ (1.113)

If we consider the system to be in steady state, the equation reduces to:

div
(
ρuĥ

)
= u · ∇P + div (k∇T )− Φ (1.114)
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div
(
ρuĥ

)
= u · ∇P + div (k∇T )− Φ (1.115)

Furthermore, we can express the enthalpy of a fluid in terms of its temperature and density with
respect a reference state as:

ĥ− ĥ0 =

∫ T

T0

ĈpdT +

∫ p

p0

(
∂ ln ρ

∂ lnT

)
p

dp (1.116)

For an ideal gas (or incompressible fluid), the expression can be written as:

ĥ− ĥ0 =

∫ T

T0

ĈpdT +
p− p0
ρ

(1.117)

Replacing the previous expression in the heat balance, and remembering that for an incompressible
fluid div(u) = 0, we arrive at:

ρu · ∇

(∫ T

T0

ĈpdT

)
= div (k∇T )− Φ

ρu
(
Ĉp(T )− Ĉp(T0)

)
· ∇T = div (k∇T )− Φ (1.118)

As the reference temperature is chosen such as Ĉp(T0) = 0, we arrive at:

ρuĈp(T ) · ∇T = div (k∇T )− Φ (1.119)

For fluids that don’t have high velocity gradients, we can make the assumption that Φ = 0, we obtain
the classic heat equation in its convection-difussion format:

ρĈp(T )u · ∇T = div (k∇T ) (1.120)

1.8 Heat: Boundary Conditions

1.8.1 Set temperature boundary
If we have a boundary in contact with an element at a constant temperature (e.g., evaporating water
or a block of ice) or we have a temperature whose dependence in time and space is known beforehand,
then the condition describing it is a Dirichlet type boundary:

T∗ = TD(r, t) (1.121)

1.8.2 Outflow boundary
When a fluid has developed its flow enough, the conductive heat along the flow is almost zero, i.e.
the heat transport is only carried out by convection. Then, if the diffusive flux obeys Fourier’s Law,
the boundary condition can be written as a von-Neumann type boundary:

−k∇T∗ · n = 0 (1.122)

Where k is the thermal conductivity.

1.8.3 Heat source boundary
If the boundary has a heating (or cooling) element that provides (or extracts) heat at a known rate,
the boundary condition for the surface in contact with the element is:

(ρ∗Ĉp∗T∗u∗ − k∇T∗) · n = qD(r, t) (1.123)

1.8.4 Insulated wall boundary
If the wall is fully insulated, there is no convertive or diffusive heat flux traversing the boundary, so
the boundary can be written as a Robin type condition:

(ρ∗Ĉp,∗T∗u∗ − k∇T∗) · n = 0 (1.124)

If the wall is impermeable to the fluid and the no-slip condition for the velocity is applied, then
equation 1.124 reduces to equation 1.122.
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1.8.5 Continuity of temperature at an interface
In the case of two domains in contact, if the boundary is not physical (i.e., the boundary is an
imaginary surface) a possibility is that the temperature across it is the same for both domains. If
both sides of the boundary are denoted by T∗+ and T∗−,

T∗+ = T∗− (1.125)

1.8.6 Heat balance at an interface
In the case of two domains in contact, if the boundary is physical (i.e., the boundary is an obstacle
between both domains) the heat between boundaries must be conserved. If the heat at both sides of
the boundary are denoted by q∗+ and q∗−, then (Incropera & DeWitt, 1999)

q∗+ · n = q∗− · n (1.126)

1.9 Species Transport Equation

1.9.1 Derivation
In this case, the observed extensive quantity is the mass B = mi of a certain species i. The funda-
mental law governing the system is the conservation of species i. Taking as reference Figure 1, the
law is given by the following equation:

acumulation inΩ = enters atΓ− leaves atΓ + generates atΩ− consumes atΩ (1.127)

Which can be written in mathematical notation as:

dmi,sys

dt
= −

c∑
j,i ̸=j

∫
Γ

∂ṁij

∂S
· ndS +

rxn∑
j

∫
Ω

∂ṁij

∂r
dr (1.128)

Where the first summation is done over al components of the fluid except component i, and the second
summation is done over all reactions occuring at the system. Therefore, ∂ṁij

∂S refers to the flux of i
leaving the volume through Γ due to the component j, and ∂ṁij

∂r is the reaction rate of component i
in the reaction j.
If we define the mass fraction of the component as wi = mi/m, then we can define the intensive
property as β = wi, so the RTT for the observed variable is:

dmi,sys

dt
=

d

dt

∫
Ω

wiρdr +

∫
Γ

ρwi(u · n)dS (1.129)

For a fixed volume and applying the divergence theorem,

dmi,sys

dt
=

∫
Ω

(wiρ)tdr +

∫
Ω

div(ρuwi)dr (1.130)

Replacing this in the component balance,∫
Ω

(wiρ)tdr +

∫
Ω

div(ρuwi)dr = −
c∑

j,i ̸=j

∫
Γ

∂ṁij

∂S
· ndS +

rxn∑
j

∫
Ω

∂ṁij

∂r
dr (1.131)

We can apply the divergence theorem to the first term in the right hand side as well as reordering
the summation with the integral to get:∫

Ω

(wiρ)tdr +

∫
Ω

div(ρuwi)dr = −
∫
Ω

c∑
j,i ̸=j

div
(
∂ṁij

∂S

)
dr +

∫
Ω

rxn∑
j

∂ṁij

∂r
dr (1.132)

If there is no reaction occuring in the system, then ∂ṁij

∂r = 0, and the system reduces to:∫
Ω

(wiρ)tdr +

∫
Ω

div(ρuwi)dr = −
∫
Ω

c∑
j,i ̸=j

div
(
∂ṁij

∂S

)
dr (1.133)
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Furthermore, if the only form of transport through the boundaries is through molecular diffusion, and
the relation between the mass flux and the mass concentration gradient is linear, the flux is modelled
by Fick’s law:

∂ṁij

∂S
= J ij = −Dij∇ (Ci) = −Dij∇ (ρwi) (1.134)

Replacing this expression in the component balance, we have:∫
Ω

(wiρ)tdr +

∫
Ω

div(ρuwi)dr =

∫
Ω

c∑
j,i ̸=j

div (Dij∇ (ρwi)) dr (1.135)

Finally, we obtain the differential balance of the system:

(wiρ)t + div(ρuwi) =

c∑
j,i ̸=j

div (Dij∇ (ρwi)) (1.136)

If we write it in terms of the mass concentration, we obtain the equivalent equation, best known as
the Convection-Diffusion equation:

(Ci)t + div(uCi) =

c∑
j,i ̸=j

div (Dij∇Ci) (1.137)

1.10 Species Transport: Boundary Conditions

1.10.1 Set concentration boundary
If the concentration at the boundary is known or fixed, the Dirichlet type boundary can be written
as:

C∗ = CD(r, t) (1.138)

1.10.2 Outflow boundary
When a fluid has developed its flow enough, the diffussion of the species along the flow is almost zero,
i.e. the species transport is only carried out by convection. Then, if the diffusive flux obeys Fick’s
Law, the boundary condition can be written as a von-Neumann type boundary:

−D∇C∗ · n = 0 (1.139)

Where D is the diffussion coefficient of the species in the medium.

1.10.3 Concentration source boundary
If the boundary has an heat at a known rate, the boundary condition for the surface in contact with
the element is:

(C∗u∗ −D∇C∗) · n = SD(r, t) (1.140)

Where SD is the source term of the species.

1.10.4 Wall boundary
If the species cannot penetrate the boundary, i.e. there is no convertive or diffusive flux traversing
the boundary, it can be written as a Robin type condition:

(C∗u∗ −D∇C∗) · n = 0 (1.141)

1.10.5 Continuity of concentration at an interface
In the case of two domains in contact, if the boundary is not physical (i.e., the boundary is an
imaginary surface) a possibility is that the concentration across it is the same for both domains. If
both sides of the boundary are denoted by C∗+ and C∗−, then (Bird, 1960)

C∗+ = C∗− (1.142)
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1.10.6 Reverse osmosis membrane boundary (non-porous)
As the membranes are not perfect, some degree of salt penetration is present. This is accounted for
with a Robin type boundary condition. Lets consider the domain which contains the salt water as Ω,
and the domain which contains the pure water as Ωp.
Mathematically, the salt flow for this model is expressed as an interface condition:

(Cfuf −Df∇Cf ) · n = (Cpup −Dp∇Cp) · n (1.143)
(Cfuf −Df∇Cf ) · n = B(Cf − Cp) (1.144)

Where B is the membrane’s salt permeability, and C refers to the molar concentration of salt. If we
neglect the permeate effects on the permeate flux (as Cp ∼ 0), the boundary can be written as:

(Cfuf −Df∇Cf ) · n = BCf (1.145)

1.10.7 Liquid-vapor thermodynamic equilibrium boundary
If there is an interface, product of a vapor-liquid equilibrium between two phases contained in their
respective domains, the concentration of a species will be given by the thermodynamic relationship
of thermodynamic equilibrium, namely, the equality of the chemical potential of said species in both
fluids. In membrane distillation, there is salt water in the feed domain Ωf and water vapor + air in
the membrane domain Ωm. Then, the equilibrium boundary condition is:

Tf = Tm (1.146)

Cm =
Cfγ(CS,f )p

0(Tf )

ρfRTf
(1.147)

Where C is the molar concentration of the water, CS is the molar concentration of salt, ρ is the molar
density and γ is the activity coefficient of the salt solution at the interface point. It is worth noting
that the equilibrium condition comes accompanied by the equality of temperature condition for the
heat balance.
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Chapter 2

Thermophysical and Transport
Properties

Once we have defined our problem, the system of equations need closure expressions for all thermo-
dynamic and transport properties involved, e.g., density, viscosity, thermal conductivity, etc. The
following chapter is dedicated to give expressions to the substances present in the literature for each
relevant property, as well as some simplifications to the available formulas, taking the precaution that
they don’t inccur in a large error from real data.

2.1 Seawater

2.1.1 Composition

It is well known that seawater is a complex mixture of various salt ions such as chloride, sodium,
potassium, carbonate, etc. However, due to the various geophysical characteristics and mineral
composition in different regions of the world, the percentage of salts present in each region may vary.
This caused variations in the property measurements reported by different oceanographers (Mangi,
Makhija, Raza, Khahro, & Jhatial, 2021). The need for a practical and unified way of correlating the
global salt content with the thermophysical properties for industrial design paved the way to define a
standard salinity scale where an arbitrary salt ion composition is used (called artificial seawater) to
measure the properties (Lewis & Perkin, 1978). Salinity is defined as the mass of salt per kilogram
of seawater:

S[g/kg] =

∑
imass of salt i

total seawatermass
=

∑
ims,i

msw
(2.1)

With the previous equation, we can relate the salinity with the molar concentration of the salt in
solution, Cs,i[mol/m

3]:

S[g/kg] =

∑
iMWs,iCs,i

ρsw
(2.2)

Where MWs,i[g/mol] is the molar weight of the solute i and ρsw[kg/m
3] is the mass density of the

seawater. Analysis from equation 2.2 together with the fact that most seawater density expressions
are polynomials in terms of S suggests that obtaining ρsw in terms of the concentrations Cs,i ends
up in a nonlinear equation to be solved through an iterative process. In this work we will use various
approximations of seawater composition, as the desalination process needs to account the different
salts present in the seawater, so a focus on the effects of each species present on the performance
of the system is also needed. For this reason, when working with either simpler representations of
seawater (e.g. sodium chloride + water, sodium chloride + calcium carbonate + water, etc.) or the
fully represented seawater, we will refer to the molar fraction of salts and its salinity definition as
stated by (Millero, Feistel, Wright, & McDougall, 2008), whose molar fraction is presented in Table
?? If available, for simpler compositions we will use available property correlations. In case there
isn’t a formula to represent the target pseudo-seawater studied, the equations of state for standard
seawater will be used, by considering the salinity of the solution as the mere sum of all the forming
salts.

21
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Table 2.1: Dry composition molar fractions Xi of seawater with salinity S = 35g/kg and T = 25◦C.
From (Millero et al., 2008)

Component i 107Xi

Na+ 4188071.5
Mg2+ 471677.6
Ca2+ 91822.9
K+ 91158.8
Sr2+ 809.6
Cl− 4874838.9
SO2−

4 252152.4
HCO−

3 15340.4
Br− 7520.1
CO2−

3 2133.6
B(OH)−4 899.8
F− 610.2
OH− 71.2

B(OH)3 2806.5
CO2 86.5
Sum 10000000

2.1.2 Density
When considering seawater as an incompressible fluid, the density of seawater or pure water at normal
temperature (25◦C) and pressure (1 atm) is often used (Lin, Lei, Wang, Wang, & Huang, 2022). In
our work, for the models which use this assumption, the value

ρ[kg/m3] = 1027.2 (2.3)

will be used. For a simple mixture of sodium chloride and water at normal temperature and pressure,
we will use the linear relation proposed by (Geraldes, Semião, & De Pinho, 2001) :

ρ[kg/m3] = 997.1 + 694ωNaCl (2.4)

Where ωNaCl[kg Nacl/kg] is the mass fraction of NaCl in the solution. If we write this expression in
terms of molar concentration CNaCl[molNaCl/m

3], we obtain

ρ[kg/m3] =
997.1

1 + 11875.4CNaCl
(2.5)

In the case of more complex mixtures imitating seawater and a more complex dependence, the
correlation due to (Nayar, Sharqawy, Banchik, et al., 2016) is used. This last equation has been used
in a wide array of not only salinities but also pressures and temperatures. For this correlation, the
units are T [◦C], S[g/kg], P [MPa].

ρ(T, S, P )[kg/m3] = ρ(T, S, P0)FP (T, P ) (2.6)

ρ(T, S, P0) = a1 + a2T + a3T
2 + a4T

3 + a5T
4 +

b1
1000

S +
b2

1000
ST

+
b3

1000
ST 2 +

b4
1000

ST 3 +
b5
104

S2T 2 (2.7)

FP (T, P ) = exp
(
(P − P0)(c1 + c2T + c3T

2 + c4T
3 + c5T

4 + c6T
5 + S(d1 + d2T + d3T

2))
)

× exp

(
(P 2 − P 2

0 )

2
(c7 + c8T + c9T

3 + d4S)

)
(2.8)

The constants for the equation are shown in Table 2.2 We derived a simpler polynomial expression
that, although it doesn’t have the low error that its original counterpart, it may simplify the treatment
when performing the finite element analysis (FEA). One of the simplifications also considered is the
independence of pressure, as in the working conditions its effect is negligible. The resulting expression
is:

ρ[kg/m3](T [◦C], S[g/kg]) = a1 + a2T + (a3 + a4T )S (2.9)
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Table 2.2: Constants used for the correlation of Nayar et al. (2016).

Constant Value Constant Value
a1 9.999× 102 c3 5.6931× 10−8

a2 2.034× 10−2 c4 −3.7263× 10−10

a3 −6.162× 10−3 c5 1.4465× 10−12

a4 2.261× 10−5 c6 −1.7058× 10−15

a5 −4.657× 10−8 c7 −1.3389× 10−6

b1 8.020× 102 c8 4.8603× 10−9

b2 −2.001 c9 −6.8039× 10−13

b3 1.677× 10−2 d1 −1.1077× 10−6

b4 −3.060× 10−5 d2 5.5584× 10−9

b5 −1.613× 10−5 d3 −4.2539× 10−11

c1 5.0792× 10−4 d4 8.3702× 10−9

c2 −3.4168× 10−6

Table 2.3: Constants used for the simplified correlation.

Constant Value Constant Value
a1 1.00268× 103 a3 −2.45805× 10−1

a2 8.04725× 10−1 a4 −2.4225× 10−4

2.1.3 Vapor pressure
Important for the membrane distillation boundary conditions, the vapor pressure of saltwater is not
directly parametrized, but rather expressed in terms of the pure water vapor pressure p0. A commonly
used equation is Antoine’s equation:

log10P [bar](T [
◦C]) = a1 +

a2
T [◦C] + a3

(2.10)

A simpler polynomial expression that can be used is:

Table 2.4: Constants used for Antoine’s equation for water. Source: NIST

Constant Value Constant Value
a1 4.6543 a3 2.08302× 102

a2 −1.435264× 103

P [Pa](T [◦C]) = a1 + a2T + a3T
2 + a4T

3 (2.11)

2.1.4 Dynamic viscosity
When considering constant viscosity of seawater as an approximation, the value of Ma et al. (2004)
is used INSERT REF:

µ[Pa · s] = 8.9× 10−4 (2.12)
For a simple mixture of sodium chloride and water at normal pressure, we will use the linear relation
proposed by (Geraldes et al., 2001):

µ[Pa · s](ωNaCl[kg/kg]) = 8.9× 10−4(1 + 3.52ωNaCl) (2.13)

As done with the density, we write this expression in terms of molar concentration CNaCl[mol/m
3]

and obtain
µ[Pa · s](Cnacl) = 8.9× 10−4(1 + 60.2327ρCNaCl) (2.14)

In the case of adding the temperature dependence, the correlation due to Lou et al. (2019) INSERT
REF is used.

µ[Pa · s](T [◦C], S[g/kg]) = a1 + a2T + a3T
2 + (a4 + a5T + a6T

2)S (2.15)
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Table 2.5: Constants used for the simplified correlation.

Constant Value Constant Value
a1 1.00268× 103 a3 −2.45805× 10−1

a2 8.04725× 10−1 a4 −2.4225× 10−4

Table 2.6: Constants used for the correlation of Lou et al. (2019).

Constant Value Constant Value
a1 1.00268× 103 a4 −2.45805× 10−1

a2 8.04725× 10−1 a5 −2.4225× 10−4

a3 8.04725× 10−1 a6 −2.4225× 10−4

2.1.5 Thermal Conductivity

When considering constant thermal conductivity as an approximation, the following value is used
INSERT REF:

k[W/(m ·K)] = 0.6 (2.16)

In the case of more complex mixtures imitating seawater and a more complex dependence, the
correlation due to Nayar et al. (2016) INSERT REF is used. This last equation has been used in a
wide array of not only salinities but also pressures and temperatures.

k(S, T, P )[W/(m ·K)] =
kw(T, P )

1 + 0.00022S[g/kg]
(2.17)

kw(T, P ) = kw0(T )(1 + P ∗(a1 + a2T
∗ + a3T

∗2 + a4T
∗3 + a5T

∗4)) (2.18)

kw0(T ) = b1T
∗−0.194 + b2T

∗−4.717 + b3T
∗−6.385 + b4T

∗−2.134 (2.19)

T ∗ =
T [◦C] + 273.15

300
(2.20)

P ∗ =
0.00001P [Pa]− 0.1

139.9
(2.21)

Table 2.7: Constants used for the correlation of equation INSERT REF.

Constant Value Constant Value
a1 21.942 b1 0.797015
a2 −77.387 b2 −0.251242
a3 102.81 b3 0.096437
a4 −60.727 b4 −0.032696
a5 13.464

We derived a simpler polynomial expression that, although it doesn’t have the low error that
its original counterpart, it may simplify the treatment when performing the finite element analysis
(FEA):

k[W/(m ·K)](T [◦C], S[g/kg]) = a1 + a2T + (a3 + a4T )S (2.22)

2.1.6 Specific Heat Capacity

When considering constant heat capacity as an approximation, the following value is used INSERT
REF:

Cp[J/(kg ·K)] = 4184 (2.23)

In the case of more complex mixtures imitating seawater and a more complex dependence, the
correlation due to Nayar et al. (2016) INSERT REF is used. This last equation has been used in a
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Table 2.8: Constants used for the simplified correlation.

Constant Value Constant Value
a1 5.66824× 10−1 a3 −4.06568× 10−6

a2 1.55991× 10−3 a4 −5.75784× 10−8

wide array of not only salinities but also pressures and temperatures.

Cp[J/(kg ·K)](S[g/kg], T [◦C], P [Mpa]) = Cp0(T, P ) + (P − P0)(a1 + a2T + a3T
2 + a4T

3

+ S(a5 + a6T + a7T
2 + a8T

3)) (2.24)
Cp0(T, P ) = Acp(S) +Bcp(S)(T + 273.15)

+ Ccp(S)(T + 273.15)2 +Dcp(S)(T + 273.15)2 (2.25)

Acp(S) = a9 + a10S + a11S
2 (2.26)

Bcp(S) = a12 + a13S + a14S
2 (2.27)

Ccp(S) = a15 + a16S + a17S
2 (2.28)

Dcp(S) = a18 + a19S + a20S
2 (2.29)

Table 2.9: Constants used for the correlation of equation INSERT REF.

Constant Value Constant Value
a1 −3.118 a11 4.04× 10−1

a2 1.57× 10−2 a12 −6.913
a3 5.1014× 10−5 a13 7.351× 10−1

a4 −1.0302× 10−6 a14 3.15× 10−3

a5 1.07× 10−2 a15 9.6× 10−3

a6 −3.9716× 10−5 a16 −1.927× 10−3

a7 3.2088× 10−8 a17 8.23× 10−6

a8 1.0119× 10−9 a18 2.5× 10−6

a9 5.328× 103 a19 1.666× 10−6

a10 −9.76× 101 a20 −7.125× 10−9

We derived a simpler polynomial expression that may simplify the treatment when performing
the finite element analysis (FEA):

Cp(S[g/kg], T [
◦C], P [Mpa]) = Acp(T ) +Bcp(T )S + Ccp(T )S

2 (2.30)
Acp(T ) = a1 + a2T (2.31)
Bcp(T ) = a3 + a4T (2.32)
Ccp(T ) = a5 + a6T (2.33)

Table 2.10: Constants used for the simplified correlation.

Constant Value Constant Value
a1 4.2005× 103 a4 3.05487× 10−2

a2 −5.2148× 10−1 a5 1.7322
a3 −6.3697 a6 6.1565× 10−3

2.1.7 Diffusivity
When considering constant diffusivity as an approximation, the following value is used INSERT REF:

D[m2/s] = 1.6× 10−9 (2.34)
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For a simple mixture of sodium chloride and water at normal temperature and pressure, we will
use the linear relation proposed by Geraldes et al. INSERT:

D[m2/s] =

{
1.6× 10−9(1− 14ωnacl) if ωnacl ≤ 0.006

1.45× 10−9 if ωnacl > 0.006
(2.35)

In the case of temperature dependence for the sodium chloride and water mixture, the correlation
due to Lou et al. (2019) INSERT REF is used.

D(T [◦C]) = 1.7872× 10−13(T + 273.15)
λNaλCl

λNa + λCl
(2.36)

λNa = 50.11(1 + 0.02(T − 25)) (2.37)
λCl = 76.35(1 + 0.02(T − 25)) (2.38)

2.2 Humid air

2.2.1 Composition

Inside the membrane distillation systems and inside its porous membranes, the fluid is a mixture of
(already present) air and water vapor. The air is in itself a mixture of various gases, and therefore it
would require a complex expression dependent on the concentration of each species. However, in the
process of membrane distillation, the air is an inert product and doesn’t change its dry composition
(i.e. the composition of the species that aren’t water), so we can use special expressions developed
for standard dry air, and consider the dry air as a unique fluid. Finally, we can use them along a
mixing rule for water to obtain the properties of the humid air at the desired conditions of pressure,
temperature and water concentration (or humidity).

For the sake of completeness, in each property the pure component full expressions are presented
along with the mixing rule for the humid air properties. Then, for simplification of the analysis,
simpler correlations and mixing rules will be presented.

2.2.2 Density

A mixture of air and water is a compressible gas, so its density is dependent on temperature, pressure
and water concentration. There are complex equations of state that can model this mixture with high
precision (INSERT EOSs), but the additional steps in the calculations needed increase greatly the
amount of simulation time. For this reason, at membrane distillation working conditions (25−100◦C
and ∼ 1 atm), a good approximation is to consider it as an ideal gas mixture INSERT PERFILOV,
whose expression is:

ρ(P, T ) =
P

RT
(2.39)

Where P is the absolute pressure, T is the absolute temperature and R is the real gas constant.

2.2.3 Vapor pressure

Any fluid that starts to experience a dynamic equilibrium between its liquid and vapor phases has a
unique pressure associated with it (at fixed temperature and concentration conditions). Important
for the membrane distillation boundary conditions, the vapor pressure of saltwater is not directly
parametrized, but rather expressed in terms of the pure water vapor pressure p0, given by expressions
2.10 and 2.11.

2.2.4 Dynamic viscosity

There is no true unique way of considering a constant viscosity, which can oscillate greatly for minor
temperature and humidity values INSERT KESTIN AND WHITELAW. For a more complex and pre-
cise treatment, the expression and mixing rules of INSERT PERFILOV is used. For this correlation,
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the units are T [◦C], Ci[mol i/m
3], P [Pa].

µ[Pa · s](P, T,Ci) =

c∑
i=1

µi(T )

1 + 1
yi(P,T,Ci)

∑c
j=1,j ̸=i yj(P, T,Cj)ϕij(T )

(2.40)

ϕij(T ) =

[
1 +

(
µi(T )
µj(T )

)0.5 (
PMi

PMj

)0.25]2
√
8
(
1 + PMi

PMj

) (2.41)

A simpler expression can be obtained if we represent the pure component viscosities by tempera-
ture polynomials, and use a simple linear mixing rule. This expression has given better results than
expected, with errors no higher than 7% at the middle of the humidity range (Melling et al. (1997)
INSERT REF):

µ[Pa · s](P, T,Ci) =

c∑
i=1

µi(T )yi(P, T,Ci) (2.42)

In both of the previous expressions, the viscosity for the pure component i and the molar fraction
of component i in the gas mixture yi are given by:

µi[Pa · s](T [◦C]) = ai + biT (2.43)

yi(P, T,Ci) =
Ci

ρ(P, T )
(2.44)

The density of the mixture is given by equation 2.39.

Table 2.11: Constants used for the correlation of equation INSERT REF.

Component ai bi
H2O (v) 8.8859× 10−6 3.0983× 10−8

dry air 4.4894× 10−6 4.6960× 10−8

2.2.5 Thermal Conductivity

The previous mixing rule is also used for the thermal conductivity:

k[W/(m ·K)](P, T,Ci) =

c∑
i=1

ki(T )

1 + 1
yi(P,T,Ci)

∑c
j=1,j ̸=i yj(P, T,Cj)ϕij(T )

(2.45)

ϕij(T ) =

[
1 +

(
µi(T )
µj(T )

)0.5 (
PMi

PMj

)0.25]2
√
8
(
1 + PMi

PMj

) (2.46)

A simpler expression can be obtained by using a simple linear mixing rule. This expression has
given better results than expected, with errors with maximum error of 7% (Melling et al. (1997)
INSERT REF):

k[Pa · s](P, T,Ci) =

c∑
i=1

ki(T )yi(P, T,Ci) (2.47)

Similar to the polynomials for the pure viscosities, for the thermal conductivity we have:

ki[Pa · s](T [◦C]) = ai + biT (2.48)
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Table 2.12: Constants used for the correlation of equation INSERT REF.

Component ai bi
H2O (v) 1.65198× 10−2 7.75356× 10−5

dry air 4.4464× 10−3 7.25141× 10−5

2.2.6 Specific Heat Capacity

An expression can be obtained if we represent the pure component heat capacities by temperature
polynomials and use a simple linear mixing rule (Melling et al. (1997) INSERT REF):

Cp(P [Pa], T [K], Ci[mol/m
3])[kJ/(kg ·K)] =

c∑
i=1

Cp,i(T )yi(P, T,Ci) (2.49)

Cp,i(T ) = ai + biT + ciT
2 + diT

3 (2.50)

yi(P, T,Ci) =
Ci

ρ(P, T )
(2.51)

Table 2.13: Constants used for the correlation of equation INSERT REF.

Component ai bi ci di
H2O (v) 6.564117 −2.6905819× 10−2 5.1820718× 10−5 −3.2682964× 10−8

dry air 1.0653697 −4.4730851× 10−4 9.8719042× 10−7 −4.6376809× 10−10

2.2.7 Diffusivity (Molecular)

In porous media, one of the needed properties is the molecular diffusivity of water vapor in air. A
constant value isn’t really possible, and the full expression due to Karanikola et al. (2016) INSERT
REF is:

D[m2/s](P [Pa], T [K]) =
0.926

103P [Pa]

(
T 2.5

T + 245

)
(2.52)

2.3 Membrane Materials

Although a membrane module has many other important characteristics associated with them, in
this section we focus only in the thermophysical and structural properties of the membranes. As each
manufacturer has its own uniques (and probably patented) formular to synthesise the membranes,
these properties are different from membrane to membrane. For this reason, we inform specific val-
ues for different membranes, as well as ranges for certain materials. In the case of reverse osmosis
membranes, the properties are listed in Table INSERT.

Table 2.14: Relevant properties for reverse osmosis membranes.

Membrane Water Permeability
[

m
sPa

]
NaCl Permeability

[
m
s

]
Source

SW30HRLE-400i 3.90× 10−12 - INSERT REF
SW30XLE-400i 4.86× 10−12 - INSERT REF
SW30ULE-400i 6.08× 10−12 - INSERT REF

BW30-400 9.56× 10−12 5.58× 10−8 INSERT REF
ESPA2RO 1.75× 10−11 2.11× 10−7 INSERT REF
CDNF501 1.4× 10−11 - INSERT REF

General range 3.75− 5.28× 10−12 5.56− 8.33× 10−9 INSERT REF

For membrane distillation membranes, the properties are given in Table INSERT.
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Table 2.15: Relevant properties for membrane distillation membranes.

Membrane d [m] k
[

W
mK

]
Cp

[
J

kgK

]
ϵ dp[m] Source

PDVF-HFP 1.3× 10−4 0.2662 1325 0.80 1.0× 10−7 INSERT REF
GE Osmonics 1.5× 10−4 0.28 1500 0.82 4.5× 10−7 INSERT REF

MS-3010 1.6× 10−4 0.28 1500 0.82 4.5× 10−7 INSERT REF
MS-3020 1.6× 10−4 0.28 1500 0.82 2.2× 10−7 INSERT REF
MS-4010 1.4× 10−4 0.28 1500 0.82 4.5× 10−7 INSERT REF
MS-2000 3.0× 10−5 0.28 1500 0.82 2.2× 10−7 INSERT REF

Sartorius 11807 6.5× 10−5 0.28 1500 0.62 2.0× 10−7 INSERT REF
Millipore Hydrophobic PVDF 1.25× 10−4 0.22 1500 0.62 2.0× 10−7 INSERT REF

Millipore Superhydrophobic PVDF 1 1.1× 10−4 0.45 1500 0.62 2.0× 10−7 INSERT REF
Millipore Hydrophobic PTFE/PP 0.30/1.30× 10−4 0.45 1500/1700 0.62 2.0× 10−7 INSERT REF

Millipore Superhydrophobic PVDF 2 1.15× 10−4 0.65 1500 0.62 2.0× 10−7 INSERT REF
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Chapter 3

Reverse Osmosis

3.1 Definition

Let us initially consider a normal diffusion process, illustrated in 3.1. The container of these solutions
is open to the atmosphere, so they are initially at the same pressure. The difference in concentrations
on both sides of the membrane generates a concentration gradient across it.

Figure 3.1: Graphical representation of molecular diffusion.

In the absence of barriers that prevent the movement of salt ions to the less concentrated side, said
concentration gradient would produce a flow of ions (dissolved salt), whose direction will be in the
opposite direction of the concentration gradient (that is, the flow will go from the least concentrated
solution to the most concentrated). The volumetric flow per unit area (or flux Js) of solute moving
by diffusion is described by Fick’s law:

Js = −D∇cs (3.1)

Where Jsis the ion diffusive flux, D is the diffusivity of salt in the solution, and cs is the salt
concentration.

Figure 3.2: Graphical representation of reverse osmosis.

31
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Now let us consider the situation in fig. 3.2: between the two aqueous solutions of different con-
centrations, a semi-permeable membrane is interposed, which only allows the passage of the solvent
(in the case of seawater, it allows the water to pass but not the salt ions). Since the solute cannot
migrate from one side to another, the solvent is forced to move across the membrane to reach equilib-
rium in the system. Similar to the previous case, the flux of solvent through the membrane is favored
by the concentration gradient between both solutions.

As the system evolves and the solvent from the dilute side migrates to the concentrated side, the
more dilute solution side will be lower than the more concentrated side. Hydrostatically, this height
difference involves a pressure difference through the relationship P = ρgh+P0, where P is the fluids
absolute pressure, ρ is the fluid density, g is the gravitational acceleration modulus, h is the fluids
height with respect a reference point where P = P0, and P0 is the atmospheric pressure. The pressure
difference between both columns of liquid once the process has equilibrated (that is, once the process
has been allowed to stand for a long enough time so that it "does not change" over time) is known
as osmotic pressure.

The reverse osmosis principle is based on the idea that the previous osmosis process can be
reversed if an external pressure (greater than the osmotic pressure) is applied to the concentrated
solution. This energy "forces" the concentrated solution to pass through the membrane and increase
the amount of the diluted solution, while the solutes are rejected by the membrane. Applying this
principle to the desalination process, we can force high-pressure salt water through the membranes,
collecting diluted (or virtually salt-free) water on the other side of the membrane.

3.2 Process description

Reverse osmosis is the most widely used process to desalinate water industrially, due to its low
operating cost and relatively low energy consumption compared to other methods. While its use
in the world accounts for 84% of the world’s desalination plants, producing 69% of the desalinated
water in the world (Skuse et al., 2021), in Chile the largest desalination plants such as the desalination
plant Minera Escondida Spa work by reverse osmosis. However, this technology is not exempt from
technical problems, such as constant fouling of the membranes (fouling), efficiency losses over time,
etc. Below we will see in more detail all the components that make up a generic desalination plant.

3.2.1 Flow Diagram

Figure 3.3: Block diagram of a Sea Water Reverse Osmosis (SWRO) desalination plant.

The desalination process can be broken down into three parts: pre-treatment, reverse osmosis, and
post-water treatment. Depending on the quality and type of water supplied to the plant (brackish
water, gray water, sea water, etc.) and the requirements that the water must have at the outlet
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(irrigation water, drinking water, deionized water, etc.), the pre- and post treatment sub-stages will
change, respectively. The stages for the desalination of seawater to produce drinking water are:

1. Sea water (with salinity S = 35 − 40 g salt/kg and temperature T = 15 − 40◦C) enters the
pre-treatment, which largely removes and/or eradicates organic matter, bacteria, viruses and
macroscopic particles, in order to reduce the rate of fouling in the reverse osmosis membranes.
Sodium hypochlorite is generally added to prevent bacterial proliferation, flocculants are used
to precipitate colloidal particles, conventional filtration to remove particulates and sand, and
occasionally filtration methods with larger pore sizes than reverse osmosis membranes such as
ultrafiltration or nanofiltration are used, which they do not require a high pressure to work and
prevent the passage of practically all contaminating agents in the water except dissolved salts.

2. Part of the pre-treated stream is fed to a high pressure pump, which is responsible for raising
the pressure from 1 bar to 50 − 70 bar. The other fraction of water passes through an energy
recovery device, exchanging pressures with a downstream stream, and finally rejoining the high
pressure pre-treated water stream. As the full pressure cannot be totally recovered from the
energy recovery device, a booster pump increases the missing pressure difference of the recycled
current.

3. High pressure water stops at the reverse osmosis banks. Here, the main stream is divided into
several sub-streams, each fed to a pressure vessel containing the osmosis filter bank. Each bank
contains 7-8 osmosis filters (cartridges) connected in series. Finally, the pre-treated water is
separated into a stream of desalinated water (permeate) and another stream of concentrated
brine. On average, the pressure drop between the inlet and outlet of a vessel is 1− 2 bar (Jeong
et al., 2021).

4. The permeate stream consisting of practically deionized water is subjected to a post-treatment
process, where a small flow of concentrated brine is reincorporated until it reaches the appro-
priate concentration (deionized water is not suitable for human consumption), together with a
amount of chlorine dioxide to disinfect the water and preserve it until consumption.

5. The high pressure concentrated brine stream is introduced to the energy recovery device (or
pressure exchanger), where the high pressure concentrated brine stream exchanges its pressure
with the pre-treated water fraction separated in step 2. Then, the stream of concentrated brine
now at low pressure is discharged into the sea, while the stream of pre-treated water now at
high pressure joins with the other fraction of pre-treated water.

Step 5 is fundamental in the technical-economic feasibility of the reverse osmosis process. As the
main factor in the operating cost of the plant is the energy used in the high pressure pump, step 5
decreases the amount of energy that has to be supplied to the pre-treated water stream for the process
to work, by recovering energy from the concentrated brine that would otherwise be lost. It is thanks
to this energy integration that the osmosis process remains among the most economical desalination
processes (Skuse et al., 2021).

3.2.2 Operating configurations

Strictly speaking, there are two ways to build desalination modules: as "dead-end" filtration or as
"cross-flow" filtration. The graphic summary of these configurations is shown in the figure 3.4.
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Figure 3.4: Filter configurations.

On one hand, in the dead-end filtration, the flow of water to be desalinated is supplied perme-
ndicularly to the surface. This configuration guarantees a higher filtration rate compared to the
other method, but in exchange the membrane fouling rate increases drastically. This configuration
is usually used for flat plate filters in experimental facilities, which seek to study the properties of
the membranes or the effect of their operation due to the change in operating conditions. On the
other hand, in cross-flow filtration, the flow is kept parallel to the membrane. Although this configu-
ration produces less permeate than the previous method, the feed flow allows impurities and fouling
substances that remain close to the membrane to be eliminated, thus postponing its fouling. This
configuration is usually used for hollow-fiber, concentric tube, and spiral-wound filters, as this method
is favored for continuous permeate production.

3.2.3 Cartridge Types

3.2.3.1 Plate and frame module

In a plate and frame filter, the membranes are spread over frames and are arranged parallel to each
other. The feed enters from the sides, and the permeate exits perpendicular to the plates. These
configurations take up a considerable amount of space and infrastructure due to their low specific
area, but they are easier to clean (Kucera, 2010). Additionally, these modules tend to foul more easily
due to the presence of dead volumes in areas where the volumetric flow is not high enough to remove
accumulated deposits.

As stated before, this form is favored for experimental configurations, usually with a dead-end
flow and for filtering flows with a high rate of suspended solids, and consider a packing area of the
order of less than 45− 150 ft2/ft3.
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3.2.3.2 Concentric tube module

In the concentric tube filter, a tube (usually with diameters between 1.3 and 2.6 cm) with several
holes is presented, which is wrapped in a membrane. As the feed progresses through the tube, the
permeate filters through the membrane, collecting on the outside of the tube, while concentrated
brine exits the other end of the tube.

This configuration is not optimal for specific tube area, with packing areas in the range of 6 −
120ft2/ft3. Similar to plate modules, they require a lot of infrastructure to install, but they are easy
to clean.

The arrangement of these filters is made in a shell and tube configuration, as shown in fig.3.5.

Figure 3.5: Configuraciones de los filtros de tubo en una carcasa.

3.2.3.3 Hollow fiber module

This configuration consists of a metal casing, inside which a multitude of membranes in the form of
hollow fibers are placed, whose ends are tied to the caps of the casing and isolated from the power
supply, as shown in the figure 3.6.

Figure 3.6: Transversal cut of a hollow fiber module.

The inner diameter of these fibers is in the order of 42µm, while the outer diameter is about 85µm.
As fluid enters the casing, the hollow fibers filter water and produce permeate within it, joining the
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permeate stream. This configuration has one of the highest specific areas of all the configurations
(150 − 1500 ft2/ft3), but it is especially susceptible to fouling in addition to having many dead
volumes and resistance to passage. of fluids due to the resistance offered by the fibers, being more
difficult to wash than other types of membrane. That is why its application is recommended for cases
where the water is of better quality (less quantity of suspended solids).

3.2.3.4 Spiral-wound module

This module is similar to that of the concentric tube, with the difference that, instead of a layer
of membrane on the orada tube, several layers of membranes and spacers alternate with each other
to form several millimetric feeding compartments (thickness between 0.71− 0.86mm) and permeate
located between the membranes, forming a spiral in cross section with a length of 50 in and a diameter
of 8 in.

As the feed enters the external part of the module in the feed spacers, the permeate filters through
the membrane and settles in the spaces generated by the permeate spacers. As the fluid has nowhere
to go, the permeate runs through the spiral until it is deposited in the central tube, while the
concentrated brine leaves through the outside of the other side of the module.

These modules have a specific area of 150 − 380 ft2/ft3, higher than the tubular module and
lower than the hollow fiber module, but the ease of construction and large area packaging make it
one of the most used modules in the industry. However, there are spaces and dead volumes within
each module, which not even cleaning with high speed water flows allows a complete distribution of
anti-fouling agents.

The caps that are placed at the ends of the module prevent the occurrence of the "telescope
effect", which occurs when the various layers of membranes and spacers slide past each other due to
the differential pressure difference between them. This effect generates a conical bulge at the end of
the membrane, hence its name, and is operationally undesirable, as it allows the feed water to pass
next to the permeate water.

3.2.4 Advantages and disadvantages

Table 3.1: Advantages and disadvantages of the reverse osmosis desalination when compared to other
desalination system.

Advantages Disadvantages
Low investment cost Very sensitive to fouling and scaling

Highly studied method High operating costs
Requires less energy than thermic methods Requires high pressures to operate

Lowest water desalination cost Quicker membrane degradation
due to antifouling/scaling treatment

Requires water pre-treatment

3.2.5 Membranes

The type of membranes required for the process depends directly onthe transport mechanism across
the membrane, as well as the chemical nature of the solutes in the seawater. The main mechanisms
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of mattertransport through a membrane are presented in fig. 3.7. The type of mechanism used by
the fluid to be transported through the membrane depends on the size of the pores in the membrane,
or even the absence of them. In order of the pore size range where each mechanism occurs, they are:

Figure 3.7: Types of mass transport mechanisms though a membrane.

• Viscous flow (or Poseuille flow): Occurs when a membrane has pores large enough to allow
fluid molecules to collide in greater quantity than the molecules collide with the membrane
walls. Indeed, intermolecular friction is the cause of the shear stresses that are experimentally
measured macroscopically and thus give meaning to viscosity as a transport property. Also,
there must be a pressure difference on both sides of the membrane to act as the driving force.
The fluid that moves by this mechanism can be represented by momentum balances such as
the Navier-Stokes equation or the Darcy equation, although usually to simplify the analysis
the incompressible Navier-Stokes equation is solved in one dimension for coordinates cylindrical
(from here comes the name of Poiseuille flow, in analogy with the incompressible flow in a
cylindrical tube), allowing to arrive at a simplified expression.

• Surface Diffusion (and multilayer diffusion): In the event that the membrane material is hy-
drophilic and porous, the water molecules are adsorbed on its surface, forming a thin layer.
This layer continues its way through the pores, crossing the membrane. When the adsorbed
layer is several water molecules thick, it is known as multilayer diffusion.

• Capillary Condensation: When the membrane material is hydrophilic and porous, and there
is a temperature gradient (and therefore a vapor pressure difference) between both sides, the
permeate can also condense inside the pore and evaporate towards the side with lower vapor
pressure.

• Knudsen Diffusion: If the pores of the membrane are very narrow, when entering the pores, the
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fluid molecules collide more frequently with the pore walls than they collide with each other.
Therefore, the transport process resembles molecular self-diffusion (when a fluid diffuses into
itself).

• Molecular Sieve: When the radius of the pores is the size of the fluid molecule (in the case of
water, 2 − 3 Å) the membrane acts as a sieve, allowing only the molecules of the fluid to pass
through. fluid while preventing the passage of solute. Although this configuration has 100%
salt rejection, the permeate flow produced is low.

• Solution - Diffusion: When the membrane is non-porous and hydrophilic, water adsorbs on the
membrane surface, then “dissolves” through the membrane and diffuses through it.

To date there is no consensus among experts whether the mechanism of water transport through
a reverse osmosis membrane is by molecular diffusion through the membrane, or if it is viscous
transport through pores (Ismail et al.). Discussions about the validity of well-established transport
models have recently been challenged (Song et al.). However, revealing the true transport mechanism
in the membrane would involve an analysis with specialized equipment (atomic force microscopes,
etc.) which is beyond the objectives of this project. Therefore, we will assume that the transport
mechanism is the one accepted by the majority of the community: the permeate diffuses through the
membrane by solution - molecular diffusion.

To achieve optimal transport through the solution-diffusion mechanism, the membrane must be as
dense as possible and not have pores, in addition to being hydrophilic to allow the initial adsorption
of water (polar molecule) on its surface for its subsequent dissolution in the membrane. The presence
of pores in the membrane allows the passage of food (salt water) through the membrane, impairing
its rejection rate.

As the reverse osmosis mechanism uses very high pressure gradients, the membrane must be tough
enough to resist this applied force, which toughness increases with the thickness of the membrane.
However, the membrane must be as thin as possible to minimize the resistance to mass transport
(remembering Fick’s law for diffusion in a medium and taking it to the infinitesimal limit, we have:
J = −D∆c

∆x Therefore, the smaller the thickness ∆x, the larger the flux J). As can be seen, these
characteristics have opposite effects on the permeate flux and induce the manufacturer to optimize
both amounts to achieve the desired specifications in a membrane. However, two types of membrane
with similar characteristics have been developed to alleviate these effects: asymmetric membranes
and composite membranes. Both membranes have a very thin and dense active layer where solution-
diffusion occurs, and also have a thick and very porous substrate layer that acts as a support for the
active layer, without hindering permeate transport (and thus, the "bottleneck" of matter transport
is the active layer).

Asymmetric membranes are membranes made from a single material, and both layers are achieved
by drying the membrane under different conditions. On the contrary, composite membranes are pre-
pared by depositing a thin, dense layer on a substrate layer that is chemically fixed to the membrane.
The most used materials to prepare them are cellulose acetate and polyamide.

The most influential physicochemical properties of a reverse osmosis membrane in the fluid dy-
namics of desalination are:

• The active and support layer thickness

• Pore size distribution

• Pore tortuosity

• Water permeability

• Solute permeability

The scientific branch that studies the synthesis of membranes is another of the fundamental
pillars in desalination technology, but the focus of this project is to study the optimization of the
fluid dynamic conditions of the desalination modules throughout the process. Therefore, we will not
delve further into this topic, since it is beyond the scope of this work.



Chapter 4

Membrane Distillation

While reverse osmosis plants are a resourceful way of desalinate water in a cost effective way, it has
two main drawbacks: its membranes propensity to foul due to the high operating pressures, and the
imposibility of desalinate brine to really high concentrations, due to increasing high pressure head
requirements (and therefore, energy requirements). With the increasing environmental regulations on
several regions, concentrated brine effluent disposal will be of paramount importance in the following
decades. Among the various proposed solutions, a different membrane based desalination method
suits these needs: membrane distillation. Recognized not only to be a more energy efficient thermal
desalination process than its thermal-based relatives (e.g. multiple effect flash), but also its capability
to integrate to renewable energy sources and to take advantage of low heat industrial currents via
energy integration (INSERT REFERENCE). As there are different configurations for membrane
distillation depending on how to generate the low vapor pressure side on the module configuration, in
this chapter we will briefly explain all the main configurations, and focus on Direct Contact Membrane
Distillation (DCMD), as is the most studied configuration, has the highest permeate flux production,
and is the easiest to implement experimentally (and industrially).

4.1 Definition

True to its name, membrane distillation is a thermal process that consist in distill pure water from
the brine trough evaporation in the liquid-vapor interface formed on the membrane pores, as shown in
figure INSERT. Unlike reverse osmosis, the driving force in this process is vapor pressure difference:
in the feed side, the fluid is at higher temperature than the permeate side, and thus, the water
vapor pressure on the feed side is higher than the permeate’s, so water vapor forms in the feed-
membrane interface, and transports itself to the permeate-membrane interface, where it is transported
away or condensed. INSERT FIGURE As the vapor pressure is a property that is independent of
concentration, membrane distillation can work with higher salinities than reverse osmosis without
compromising its permeate flux. This quality makes it suitable as a Zero Liquid Discharge (ZLD)
technology (INSERT REFERENCE). This process isn’t new: the original process was patented in the
70s by INSERT NAME, but since membrane distillation membranes have less permeability and the
method itself uses more than five times (at least) the energy used by reverse osmosis, it hadn’t been
widely studied until recently (INSERT REFERENCE). As the membraneDue to its circumstantial
and environmental advantages with respect to reverse osmosis, we will study this process as the other
mechanisms of viable desalination

4.2 Process description

Membrane distillation has only recently been increasing in popularity among scholars INSERT REFEN-
RECE. The versatility of this method coupled with its ability to use renewable energy sources make
it a useful method to complement or even replace reverse osmosis systems in certain situation. Still,
many problems are to be tackled: membrane distillation membranes are still susceptible to fouling
(though less than reverse osmosis ones), the energy consumed is many times more than pressure based
systems (altough less than other thermal methods), and the MD membranes have lower permeate flux
than RO. However, with the continuous researcher efforts to improve MD membranes and reduce the
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half century gap that RO has, the prospects of a competitive method are promising. As mentioned
earlier, membrane distillation systems are not unique: depending on the permeate side carrier, not
only its characteristics but also the equipment and process steps change. A graphical representation
of the main MD configurations is shown on the following figure.

Figure 4.1: Different MD configurations.

• In Direct Contact Membrane Distillation (DCMD), the permeate side is filled with pure water
at a colder temperature than the feed side (15 − 20◦) that fills the pores at the substrate side
of the membrane, reducing the distance that the vapor needs to travel to condense, therefore
increasing the permeate flux. The permeate flow is then re-cooled in a heat exchanger, and part
of it is removed as the product.

• In Sweeping Gas Membrane Distillation (SGMD), the permeate side is filled with flowing cold
air that humidifies as the vapor passes though to the pemeate side. THe humid air is then
pased through a condenser where the vapour turns into pure liquid water, and the dry air is
recirculated into the module. This configuration is more cumbersome to set up, but the use
of air diminishes the heat losses from conduction on the membrane, therefore increasing the
energy efficiency.

• In Air-Gap Membrane Distillation (AGMD), the permeate side is filled with a stagnant air film
and one of its walls is a cooling plate. Here, the vapor diffuses into the air film, and condenses
into the cooling plate to be collected at the bottom of the module. This configuration has the
advantage diminishing the energy required to condense the water, as the previous configuration
has to cool down enormous flows of air to achieve the same. However, the settled air gap is
more propense to temperature polarization effects.

• In Vacuum Membrane Distillation (VMD), the permeate side is void: a vacuum pump connected
to this side creates a vacuum, generating low vapor pressure (almost zero) and increasing the
driving force for distillation. The extracted vapor is then captured and turn into liquid in a
condenser. This technology is useful to erradicate traces of undesired byproducts/contaminants
in a current, but it hasn’t been the leading distillation method for desalination.

Since its not our purpose to give a detailed review of all systems, we will stick to one of them: DCMD.
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4.2.1 Flow Diagram

Figure 4.2: Block diagram of a DMCD desalination plant.

The desalination process can be broken down into three parts: pre-treatment, membrane distillation,
and post-water treatment. Depending on the quality and type of water supplied to the plant (brackish
water, gray water, sea water, etc.) and the requirements that the water must have at the outlet
(irrigation water, drinking water, deionized water, etc.), the pre- and post treatment sub-stages will
change, respectively. The stages for the desalination of seawater to produce drinking water are:

1. Sea water (with salinity S = 35 − 40 g salt/kg and temperature T = 15 − 30◦C) enters the
pre-treatment, which largely removes and/or eradicates organic matter, bacteria, viruses and
macroscopic particles, in order to reduce the rate of fouling in the reverse osmosis membranes.
Sodium hypochlorite is generally added to prevent bacterial proliferation, flocculants are used
to precipitate colloidal particles, conventional filtration to remove particulates and sand, and
occasionally filtration methods with larger pore sizes than reverse osmosis membranes such as
ultrafiltration or nanofiltration are used, which they do not require a high pressure to work and
prevent the passage of practically all contaminating agents in the water except dissolved salts.

2. Using a heat exchanger and a low-grade or renewable heat source, the pre-treated water is then
heated to the target temperature (T = 30− 104◦C) and sent into the membrane module.

3. The water vapor condenses in the permeate flow in each module, and is then sent to a heat
exchanger, where the current is cooled to normal temperature (T = 15−30◦C). One part of the
permeate is sent to post-treatment as product, and the other is recirculated into the process.

4. For the permeate stream consisting of practically deionized water sent to a post-treatment
process, a small flow of concentrated brine is reincorporated until it reaches the appropriate
concentration (deionized water is not suitable for human consumption), together with a amount
of chlorine dioxide to disinfect the water and preserve it until consumption.

5. Part of the outlet brine is reintegrated to the feed, and the purge flow is cooled in a heat
exchanger up to environmental law standards and then released.

Unlike RO systems, energy integration in MD systems is inefficient: as the heat sources used are
low-grade heat and the temperature differences are also low, the efficiency of using for example, a
current of hot concentrated brine to heat a current of entering seawater, are very low. Added to this,
the heat exchanger used for this purpose would require higher contact area and residence time as
the temperature difference between currents are less, ending up in unrealistically large and expensive
exchangers. Still, one should investigate if this premise holds true for each individual case, as each
plant operates under different temperatures.
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For the operating configurations and cartridge types, the information given on the reverse osmosis
chapter also holds true for this method. However, the permeate fluxes obtained for different cartridges
are lower compared to MD systems.

4.2.2 Advantages and disadvantages

Table 4.1: Advantages and disadvantages of the MD desalination when compared to other desalination
systems.

Advantages Disadvantages
Versatile energy source use High investment cost

High ERNC integration High operating costs
Currently an intensely researched topic Research is just recently taken off

Less fouling propensity than RO Higher energy needs than RO
Can concentrate up to high salinity

Works at low pressures

4.2.3 Membranes
Membrane distillation works by forming an interface on the membrane pores and evaporating pure
water on them, so then the vapor can transport to the other side. So, to achieve an optimum
permeate flux and salt rejection for a MD membrane, we need a membrane that is highly porous so
to span a large interfacial and increment the evaporation flux, is thin to reduce the water vapor mass
transfer resistance, its active layer is highly hidrophobic to mantain the liquid-vapor interface on high
porosities and avoid saltwater penetration, and is mechanical, thermal and chemically resistant.

The membrane must be as thin as possible to minimize the resistance to mass transport (re-
membering Fick’s law for diffusion in a medium and taking it to the infinitesimal limit, we have:
J = −D∆c

∆x Therefore, the smaller the thickness ∆x, the larger the flux J). As can be seen, these
characteristics have opposite effects on the permeate flux and induce the manufacturer to optimize
both amounts to achieve the desired specifications in a membrane. However, two types of membrane
with similar characteristics have been developed to alleviate these effects: asymmetric membranes
and composite membranes. Both membranes have a very thin and dense active layer where solution-
diffusion occurs, and also have a thick and very porous substrate layer that acts as a support for the
active layer, without hindering permeate transport (and thus, the "bottleneck" of matter transport
is the active layer).

Asymmetric membranes are membranes made from a single material, and both layers are achieved
by drying the membrane under different conditions. On the contrary, composite membranes are pre-
pared by depositing a thin, dense layer on a substrate layer that is chemically fixed to the membrane.
The most used materials to prepare them are vinyl-related plastic polymers.

Unlike RO membranes, the vapor transport mechanisms through the MD membranes are more
than one, as the membrane is porous: it can experience viscous (poiseuille) flow, molecular diffusion
or Knudsen diffusion. The predominant transport mechanism is given by pore size distribution. E.g.
if a membrane whose mayority of pores are very narrow will have its vapor travel mostly by Knudsen
diffusion.

The most influential physicochemical properties of a reverse osmosis membrane in the fluid dy-
namics of desalination are:

• The active and support layer thickness and porosity

• Pore size distribution

• Pore tortuosity

The scientific branch that studies the synthesis of membranes is another of the fundamental
pillars in desalination technology, but the focus of this project is to study the optimization of the
fluid dynamic conditions of the desalination modules throughout the process. Therefore, we will not
delve further into this topic, since it is beyond the objectives of this work.
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Fouling

5.1 Definition
Sea water is not only salt water: several substances coexist in it, which, if not previously treated
with them, one risks their progressive accumulation on the surface of the membrane, dirtying it. This
mechanism is known as fouling. Fouling has two main effects on the reverse osmosis membrane:

• The operating pressure required for the same flow rate increases: the fouling layer forms an
additional resistance to the transport of matter, so the water must pass through said additional
resistance before passing through the membrane. For this, the fluid requires a higher pressure.

• Increases the pressure drop along the module: fouling increases the obstacles that the water
flow has to cross to get from one end to the other, causing greater flow losses (and therefore
axial pressure) associated with this extra resistance.

Both consequences are undesirable for the correct operation of the plant, since an increase in
the operating pressure eventually leads to mechanical ruptures of the modules or to the occurrence
of the telescope effect, as shown in figure 5.1. Fouling is exacerbated by high membrane permeate
fluxes and low membrane tangential fluxes, since higher permeate flux brings more solute closer to
the membrane, forming the concentration boundary layer much faster. With a low tangential velocity
that is not capable of dragging all that solute, said boundary layer thickens, and resistance increases,
increasing the residence time of the solutes and favoring their deposition on the membrane.

Figure 5.1: Telescopic effect in a spiral-wound module.

5.2 Mechanisms
Just as there are several substances present in the water, the types of fouling are varied. These can
be categorized into:

• Colloidal fouling: solid particles (alumina, silica, iron silicates) with diameters between 10−9and10−5m
suspended in the water reach a critical concentration and begin to precipitate on the membrane,
forming a gel layer on the surface.

• Biofouling: bacteria that survived the pre-treatment settle in the areas of lower flow on the
surface of the membrane and begin to replicate by mitosis, using all the organic matter available
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in the water as food. Bacterial proliferation can be catastrophic if left unchecked, due to the
exponential growth of the bacterial population. Bacteria release proteins that, together with
organic matter, generate additional resistance to the osmosis process.

• Scaling: as the concentration increases along the desalination product module, various salts
naturally present in the water whose solubility is lower than that of common salt (NaCl) reach
their solubility limit and begin to precipitate, forming crystals in the membrane. Sparingly
soluble salts include divalent species (calcium carbonate, sulfate, fluoride, and phosphate),
reactive silica, and sulfates of other divalent metals, such as barium and strontium.

5.3 Fouling Indicators

5.3.1 Silt Density Index (SDI)



Chapter 6

Numerical Modeling of Desalination
Systems

In the case of reverse osmosis, there are several ways to represent a module using transport equations:
models range from systems of empirical algebraic equations to represent the entire module (Jeong et
al. (2021), Koutsou et al. (2020), Chen et al. al. (2020), Toh et al. (2020)) to a detailed three-
dimensional modeling of the domain including the detail of the spacers (Picioreanu et al. (2009), Su
et al. (2018), Luo et al. (2020)).

Due to the above, we will formulate various models which differ in complexity and considerations,
based in observations from previous work made on the subject. These models will be presented
starting from the most basic up to the most complete problem. Its important to notice that the
most simple models can still capture the main aspects of reverse osmosis the whilst reducing the
computational effort by making sensible asumptions, but more refined models allow to study certain
phenomena with more detail, such as fouling aggregation.

In the case of membrane distillation, we will increase gradually the difficulty of the models con-
sidered. In the case of membrane distillation, the heat balance equation is added to account for tem-
perature drop and polarization throughout the module. Also, thermodynamics and variable physical
properties have to be accounted for, making the problem technically more difficult to model than
reverse osmosis.

6.0.1 Model 1: Two dimensional filtrating channel with imperfect mem-
brane and explicit spacers

This model is the simplest of all, and it captures the basic characteristics of the reverse osmosis mech-
anism: the boundary layer formation, the spacer effects on the concentration polarization reduction,
and its effects (alongside changes in velocity and pressure) in the permeate flux and salt rejection.
To achieve this, the following simplifications are applied:

1. We consider only the feed channel domain Ωf for two reasons: first, as the membranes high salt
rejection doesnt alter the concentration profile at the permeate channel as much as in the feed
channel. Therefore, the osmotic effects on the permeate side on the feed side can be neglected.
Second, the pressure drop across both channels due to fluid flow is four orders of magnitude less
than the static pressure in each channel. This allows us to consider a constant pressure drop
between the channels and discard the effects of the pressure drop on the permeate side, as the
pressure drop in both domains is negligible when comparing to the static pressure difference.
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2. On the feed side enters saltwater, whose dissolved salt is only NaCl (to simplify the analysis),
and whose salinity is that of seawater (S = 35−40 g/kg). This approximation is sensible due to
the high mass fraction of sodium chloride present in seawater with respect to other salts present,
and it allow us to neglect several species transport equations that otherwise should be coupled
with the system. However, this also impairs the fouling analysis, as the other components in
seawater are responsible for it.

3. We’ll model the spacers explicitly in the domain. This allow us to apply Navier-Stokes equations
directly. For this study, we will consider all three spacer geometries that can be studied in two
dimensions: cavity, zig-zag and submerged. These are presented in the following figure.

4. The domain simulated will be in two dimensions. This reduces de computation time required
for the simulations, but it neglects the mixing effect that the spacers have on the velocity fields
across the suppresed coordinate. The fluid regime is laminar, as the Reynolds number in the
channels are reported to be less than 600 in practice (Luo, Li, & Heng, 2020).

5. We consider steady state, with developed velocity profile as an inlet boundary condition. The
spacers are treated as walls, whilst the membranes have different boundary conditions based on
specific models for reverse osmosis membranes.

6. Incompressible flow (ρ constant) will be considered, each one with its respective density. This
approximation is based on the low deviation of the density with respect to its input value. If
we consider that the salinity (concentration) of the feed water is 35 − 40 g/kg and that of the
permeate is ∼ 0 g/kg, that the maximum concentration at which the concentrated brine can
be is 100%

TR S, where TR is the water recovery rate (typically 50% for seawater reverse osmosis),
the amount of salt in the outlet permeate must not exceed 1% of the feed salts (Kucera, 2015),
and that the system pressure ranges between 50− 80 bar (0.5− 0.8MPa), the following density
deviation curves are obtained:
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Figure 6.1: Density and osmotic pressure variation for feed and permeate channels.

Analyzing the density curves, it is observed that the deviation of the density with respect to the
input value does not exceed 3.5% for the most concentrated system and at the highest pressure
and temperature in the feeding zone. In the case of the permeate zone, the error does not
exceed 0.004% (because the concentrations in the permeate zone are very low). Therefore, the
incompressibility approximation is assumed to be valid for the ranges of variables used in both
domains. Regarding the osmotic pressure, the curves in both zones present a linear behavior
starting from the origin, thus confirming the possibility of parameterizing the osmotic pressure
as π (c) = ac.

7. By performing an analysis similar to that for density, it can be determined that the dynamic
viscosity µ and the diffusivity D can be considered approximately constant.

Defining the stress and strain tensors on domain Ωf , τ f and ef , respectively:

τ f (uf , pf ) = −pfI + 2µef (uf ) (6.1)

ef (uf ) =
1

2

(
∇uf +∇uT

f

)
(6.2)

Then, the problem can be stated as: find the field {uf , pf , Cf} that satisfies the following system,
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ρ div (uf ⊗ uf )− div (τ f (uf , pf )) = 0 inΩf

div (uf ) = 0 inΩf

div (Cfuf )− div (D∇Cf ) = 0 inΩf

uf = U in (r) inΓin

Cf = Cin inΓin(
−pfI + µ

(
∇uf +∇uT

f

))
· n = −pout · n inΓout

∇Cf · n = 0 inΓout

uf = 0 inΓw

(Cfuf −D∇Cf ) · n = 0 inΓw

uf · n = A (∆P − π (Cf )) inΓm

uf · t = 0 inΓm

π (Cf ) = iRTCf

(Cfuf −D∇Cf ) · n = BCf inΓm

(6.3)

The parameters for the simulation are given in the following table.

Parameter Meaning Value Units
T System temperature 298.0 K
R Ideal gas constant 8.314× 106 kgmm2s−2mol−1K−1

i Number of ions from salt solvation 2 −
U in Inlet velocity profile

[
6ūin∗

y
h∗

(
1− y

h∗

)
, 0
]

mms−1

ūin Inlet mean fluid velocity 10.0 mms−1

Cin Inlet salt molar concentration 600× 10−9 molmm−3

∆P Hydrostatic transmembrane pressure 5572.875 kgmm−1s−2

pout Outlet feed gauge pressure 0 kgmm−1s−2

L Channel length 20 mm
d Channel diameter 2.0 mm
Nsp Number of spacers 3 −
hs Height of submerged spacers 1.0 mm
ds Spacer diameter 0.8 mm
lsf Distance between spacer centers 5.0 mm
lfs Inlet-first spacer distance 5.0 mm
ρ Fluid density 1027.2× 10−9 kgmm−3

D Diffusivity of salt in water 1.611× 10−3 mm2s−1

µ Fluid dynamic viscosity 8.9× 10−7 kgmm−1s−1

A Membrane water permeability 3.75× 10−6 mm2 s1kg−1

B Membrane salt permeability 5.56× 10−6 mms−1

6.0.2 Model 2: Two dimensional filtrating channel with imperfect mem-
brane and spacers as porous media

The previous model requires coupling the domain with different boundary conditions for walls and
obstacles, the introduction of more complex geometry which in turn may harden the finite element
analysis, and the use of a high number of elements when simulating in three dimensions. Perfilov
(Perfilov, 2018) stated that the domain could be simplified if the channel with spacers are treated
as a porous media, as shown in the following figure. Although it only has been tested in membrane
distillation configurations, the assumptions used are also applicable to reverse osmosis in principle
(Kleffner, Braun, & Antonyuk, 2019).
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Then, the domain stays simple to analyze, and the numerical effort required to simulate the
channel diminishes. This approximation is not out of reason: after all, a common spacer channel is
less than a milimeter thick, and inside of it the spacer mesh is located, whose thickness is half that
of the spacer. However, an additional constant is introduced, which is specific for each porous media:
the permeability of the porous medium. Attempts have been done to approximate its value with
theoretical and semi-empirical models, but the only true way of determining its exact value is though
a experimental setup. In this work The following considerations are used in this model:

1. We will consider a steady state, two dimensional case. The domain will be a homogeoeus porous
medium with porosity εf , and the fluid within fills up the entire channel. The fluid regime is
laminar.

2. Membranes will have the same boundary conditions as the previous model, but for the apparent
velocity um/εf .

3. The fluid is considered incompressible, and its properties are constant.

4. The porosity of the medium is calculated based on its definition. To directly compare the results
with the previous model, the spacer number and dimensions are used in this model:

εf =
Void volume
Total volume

=
Total volume − Occupied volume

Total volume

=
Total area − Occupied area

Total area

=
hL−Nspπ

d2
s

4

hL
(6.4)

(6.5)

5. The permeability coefficient will be obtained from theoretical expressions. Altough one can
determine the permeability by analyzing the flow data of the previous model, it defeats the
purpose of this one. Generally, the models to determine K are independent of fluid parameters,
and dependent on the pore diameter, distribution and tortuosity. In conclusion, the permeability
will be a constant in our system. As a first approach, we will use the Kozeny-Carman equation
to determine permeability:

K = Φ2
ε3fd

2
s

150(1− εf )2
(6.6)

Where Φ is the sphericity of the particle forming the porous media.In 2D, the spacers are seen
as spherical particles, so Φ = 1. It is worth noting that this expression original range validity
is for creeping flow regime (Re < 1), after which the fluid begins to experiment friction losses.

Upon analyzing the previous equation, it is clear that the porosity model doesn’t consider spacer
distribution on the domain, so the prediction for all three configurations will be the same. Follow-
ing these asumptions, the model is formulated as: find find the field {uf , pf , Cf} that satisfies the
following system,
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ρ div
(

uf

εf
⊗ uf

εf

)
− div

(
τ f

(
uf

εf
, pf

))
= − µ

ρKf
uf − Cfrc√

Kf

|uf |uf inΩf

Cfrc =
1.75ρεf√

150ε3f

div
(

uf

εf

)
= 0 inΩf

div
(
Cf

uf

εf

)
− div (D∇Cf ) = 0 inΩf

uf = U in (r) inΓin

Cf = Cin inΓin(
−pfI + µ

(
∇uf

εf
+∇uf

εf

T
))

· n = −pout · n inΓout

∇Cf · n = 0 inΓout
uf

εf
· n = A (∆P − π (Cf )) inΓm

π (Cf ) = iRTCf (van’t Hoff equation for osmotic pressure)(
Cf

uf

εf
−D∇Cf

)
· n = BCf inΓm

(6.7)

The parameters for the simulation are given in the following table.

Parameter Meaning Value Units
T System temperature 298.0 K
R Ideal gas constant 8.314× 106 kgmm2s−2mol−1K−1

i Number of ions from salt solvation 2 −
U in Inlet velocity profile

[
6ūin∗

y
h∗

(
1− y

h∗

)
, 0
]

mms−1

ūin Inlet mean fluid velocity 10.0 mms−1

Cin Inlet salt molar concentration 600× 10−9 molmm−3

∆P Hydrostatic transmembrane pressure 5572.875 kgmm−1s−2

pout Outlet feed gauge pressure 0 kgmm−1s−2

L Channel length 20 mm
d Channel diameter 2.0 mm
ϵf Channel porosity 0.9174 −
ρ Fluid density 1027.2× 10−9 kgmm−3

D Diffusivity of salt in water 1.611× 10−3 mm2s−1

µ Fluid dynamic viscosity 8.9× 10−7 kgmm−1s−1

A Membrane water permeability 3.75× 10−6 mm2 s1kg−1

B Membrane salt permeability 5.56× 10−6 mms−1

Kf Porous medium permeability 9.682× 10−1 mm2

One must be careful, as the model will not predict the local effect of the spacers on the concen-
tration and permeate velocity profiles in the membrane as the model considers the whole channel
including the spacers as a homogeneous porous media, or it will not predict a difference in predictions
between spacer configurations that give the same porosity. However, the porous model does require
less elements to be calculated correctly as the explicit representation of the spacers needs a fine mesh
refinement near its surface. In conclusion, tests need to be performed to see if the industrially relevant
values (rejection factor and permeate flow) are well predicted by the model to see if the model has
potential to represent the channel with spacers.

6.0.3 Model 3: Two dimensional coupled channels with explicit spacers

This coupled model considers the membrane as an interface between the feed and channel domains.
Although the transport equations on this model are the same as model 1, the boundary conditions
change to allow the interdependence between concentration and pressure changes between both chan-
nels (let’s remember in model one we considered the permeate to be pure water. The schematic of
this system is presented in the following figure.

The asumptions for this model are:

• Each channel has its own characteristic fluid properties, which are constants. For this, the stress
tensor is defined as:

τ ∗ (u∗, p∗) = −p∗I + 2µ∗e∗ (u∗) (6.8)
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• We consider two dimensions, steady state and laminar flow in both channels. For the sake of
completeness, we consider different trnasport and physical properties on both channels arising
from the prominent concentration difference, although the model can be applied considering
both sides properties as equal under the assumption that the concentration effect on the prop-
erties is negligible.

Following these asumptions, the model is formulated as: find the field {uf , pf , Cf ,up, pp, Cp} that
satisfies the following system,



ρ∗ div (u∗ ⊗ u∗)− div (τ ∗ (u∗, p∗)) = 0 inΩ∗, ∗ = f, p
div (u∗) = 0 inΩ∗, ∗ = f, p
div (C∗u∗)− div (D∗∇C∗) = 0 inΩ∗, ∗ = f, p
u∗ = U in∗ (r) inΓin∗, ∗ = f, p
C∗ = Cin∗ inΓin∗, ∗ = f, p(
−p∗I + µ∗

(
∇u∗ +∇uT

∗
))

· n = −pout∗ · n inΓout∗, ∗ = f, p
∇C∗ · n = 0 inΓout∗, ∗ = f, p
u∗ = 0 inΓw∗, ∗ = f, p
(C∗u∗ −D∗∇C∗) · n = 0 inΓw∗, ∗ = f, p
uf · n = up · n inΓm

uf · n−A (∆P − (π (Cf )− π (Cp))) = 0 inΓm

π (C∗) = iRTC∗ ∗ = f, p
(Cfuf −Df∇Cf ) · n = (Cpup −Dp∇Cp) · n inΓm

(Cfuf −Df∇Cf ) · n = B (Cf − Cp) inΓm

(6.9)

The parameters for the simulation are given in the following table.
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Parameter Meaning Value Units
T System temperature 298.0 K
R Ideal gas constant 8.314× 106 kgmm2s−2mol−1K−1

i Number of ions from salt solvation 2 −
U in∗ Inlet velocity profile

[
6ūin∗

y
h∗

(
1− y

h∗

)
, 0
]

mms−1

ūinf Inlet mean feed fluid velocity 10.0 mms−1

ūinp Inlet mean permeate fluid velocity 1.0 mms−1

Cinf Inlet feed salt molar concentration 600× 10−9 molmm−3

Cinp Inlet permeate salt molar concentration 6× 10−9 molmm−3

∆P Hydrostatic transmembrane pressure 5572.875 kgmm−1s−2

poutf Outlet feed gauge pressure 0 kgmm−1s−2

poutp Outlet permeate gauge pressure 0 kgmm−1s−2

L Channel length 20 mm
df Feed channel diameter 2.0 mm
dp Permeate channel diameter 2.0 mm
Nsp,f Number of spacers in feed 3 −
Nsp,p Number of spacers in permeate 3 −
hsf Height of submerged spacers in feed 1.0 mm
hsp Height of submerged spacers in permeate 1.0 mm
dsf Feed spacer diameter 0.8 mm
dsp Permeate spacer diameter 0.8 mm
lsf Distance between spacer centers in feed 5.0 mm
lsp Distance between spacer centers in permeate 5.0 mm
ϵf Feed channel porosity 0.9174 −
ϵp Permeate channel porosity 0.9174 −
lfsf Inlet-first spacer distance in feed 5.0 mm
lfsp Inlet-first spacer distance in permeate 5.0 mm
ρf Feed fluid density 1027.2× 10−9 kgmm−3

ρp Permeate fluid density 1027.2× 10−9 kgmm−3

Df Feed diffusivity of salt in water 1.611× 10−3 mm2s−1

Dp Permeate diffusivity of salt in water 1.611× 10−3 mm2s−1

µf Feed fluid dynamic viscosity 8.9× 10−7 kgmm−1s−1

µp Permeate fluid dynamic viscosity 8.9× 10−7 kgmm−1s−1

A Membrane water permeability 3.75× 10−6 mm2 s1kg−1

B Membrane salt permeability 5.56× 10−6 mms−1

6.0.4 Model 4: Two dimensional coupled channels with spacers as porous
media

This model is an extension of model 2, as model 3 was of model 1. The following considerations are
taken into account:

1. The coupled domains are two dimensional. The system is in steady state and its flow regime is
laminar.

2. All the asumptions about the thermodynamic and transport properties made about model 2
are valid here. However, due to the difference of spacer materials and concentration in both
channels, each domain has its own set of properties.

Following these asumptions, the model is formulated as: find find the field {uf , pf , Cf ,up, pp, Cp}
that satisfies the following system,
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ρ∗ div
(

u∗
ε∗

⊗ u∗
ε∗

)
− div

(
τ ∗

(
u∗
ε∗
, p∗

))
= − µ∗

ρ∗K∗
u∗ − Cfrc∗√

K∗
|u∗|u∗ inΩ∗, ∗ = f, p

Cfrc∗ = 1.75ρ∗ε∗√
150ε3∗

div
(

u∗
ε∗

)
= 0 inΩ∗, ∗ = f, p

div
(
C∗

u∗
ε∗

)
− div (D∗∇C∗) = 0 inΩ∗, ∗ = f, p

u∗ = U in∗ (r) inΓin∗, ∗ = f, p
C∗ = Cin∗ inΓin∗, ∗ = f, p(
−p∗I + µ∗

(
∇u∗

ε∗
+∇u∗

ε∗

T
))

· n = −pout∗ · n inΓout∗, ∗ = f, p

∇C∗ · n = 0 inΓout∗, ∗ = f, p
u∗ = 0 inΓw∗, ∗ = f, p(
C∗

u∗
ε∗

−D∗∇C∗

)
· n = 0 inΓw∗, ∗ = f, p

uf

εf
· n =

up

εp
· n inΓm

uf

εf
· n−A (∆P − (π (Cf )− π (Cp))) = 0 inΓm

π (C∗) = iRTC∗ ∗ = f, p(
Cf

uf

εf
−Df∇Cf

)
· n =

(
Cp

up

εp
−Dp∇Cp

)
· n inΓm(

Cf
uf

εf
−Df∇Cf

)
· n = B (Cf − Cp) inΓm

(6.10)

The parameters for the simulation are given in the following table.

Parameter Meaning Value Units
T System temperature 298.0 K
R Ideal gas constant 8.314× 106 kgmm2s−2mol−1K−1

i Number of ions from salt solvation 2 −
U in∗ Inlet velocity profile

[
6ūin∗

y
h∗

(
1− y

h∗

)
, 0
]

mms−1

ūinf Inlet mean feed fluid velocity 10.0 mms−1

ūinp Inlet mean permeate fluid velocity 1.0 mms−1

Cinf Inlet feed salt molar concentration 600× 10−9 molmm−3

Cinp Inlet permeate salt molar concentration 6× 10−9 molmm−3

∆P Hydrostatic transmembrane pressure 5572.875 kgmm−1s−2

poutf Outlet feed gauge pressure 0 kgmm−1s−2

poutp Outlet permeate gauge pressure 0 kgmm−1s−2

L Channel length 20 mm
df Feed channel diameter 2.0 mm
dp Permeate channel diameter 2.0 mm
ρf Feed fluid density 1027.2× 10−9 kgmm−3

ρp Permeate fluid density 1027.2× 10−9 kgmm−3

Df Feed diffusivity of salt in water 1.611× 10−3 mm2s−1

Dp Permeate diffusivity of salt in water 1.611× 10−3 mm2s−1

µf Feed fluid dynamic viscosity 8.9× 10−7 kgmm−1s−1

µp Permeate fluid dynamic viscosity 8.9× 10−7 kgmm−1s−1

A Membrane water permeability 3.75× 10−6 mm2 s1kg−1

B Membrane salt permeability 5.56× 10−6 mms−1

Kf Feed porous medium permeability 9.682× 10−1 mm2

Kp Permeate porous medium permeability 9.682× 10−1 mm2

6.0.5 Model 5: Scaling in reverse osmosis channel

In this model, we focus on simulating the scaling process (cristallization of insoluble salts). This
requires the introduction of a new variable representing the insoluble salt, CX . As one incorporates
more than one salt species into the mixture, the balances must be made for ions, as there are ions
that can form various different salts. However, as the complexity of the multiple interactions between
different ions would make the problem more difficult to analyze, we focus on the main substances
responsible for fouling.
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To consider the cristallization of salt in explicit parts of the membrane, the work of (Radu, Berg-
werff, Van Loosdrecht, & Picioreanu, 2014) on gypsum fouling is the current best way to represent
it. However, the complexity of the involved model and the further simplifications that would be
necessary to apply on the model clashing with its fidelity to physics made the implementation of such
model highly inconvenient. To that effect, some authors have analyzed the scaling factibility through
postprocessing operations on a normal channel. A case for membrane distillation is (Amigo, Urtubia,
& Suárez, 2018), that can readily be applied to the reverse osmosis transient channel case, corre-
sponding to model 1 with the time-dependent terms. However, to extract the maximum information
possible, it is recommended to perform the simulations in 3D.

6.0.6 Model 6: Colloidal fouling in reverse osmosis channel
In this model we study the effect of colloidal particle deposition on the reverse osmosis membrane
performance. The multivariable dependence of thermodynamic and transport properties couples the
equations even more than before, where coupling was included only at the boundaries. The second
point turns the problem into a transient one, as accumulation of sediment is an intrinsically temporal
phenomena.

However, the weak compressibility allows us to relax the dependences: instead of using complex
and highly nonlinear correlations for properties, we can interpolate them as linear functions, as the
property fluctuations in the concentration range we work on is smooth and linear enough. The
assumptions for this model are:

• We only model the feeding channel (the permeate channel doesn’t foul, and the colloid doesn’t
penetrate the membrane).

• We consider the system in 2D (therefore neglecting the mixing effects in the omitted coordinate).

• The system is transient, and its regime is laminar.

• The system is isothermic (the heat equation is therefore omitted).

• The fluid is composed of water, NaCl S, and a colloidal substance X (in this case, colloidal
silica).

• The fluid is newtonian and incompressible. The density is ρ0, viscosity µ0, diffusivity of NaCl
DS , and diffusivity of the colloid DX .

• The membrane behaves following the sorption-diffusion model.

• The osmotic pressure is given by van’t Hoff law.

• The deposition rate model is that of Su et al. (2019) (Su, Li, Palazzolo, & Ahmed, 2019). This
model includes the increase in membrane resistance due to fouling as a flow through porous
media.

• The fouling layer detachment rate from the mebrane is neglected.

• The flow through the cake layer is modelled with Brinkman equations. To use the same equation
without an interface condition between two different porosity systems, a switch function ψ(ε)
is added. This function "turns off" the Darcy term on the momentum balance.



55

Following the previous assumptions, the problem is: find the field {um, pf , CS,f , CX,f} that sat-
isfies the following system,

ρ0
uf,t

ε + ρ0
uf

ε · ∇uf

ε − div
(
−pfI + µ0(∇uf

ε +∇uf

ε

t
))
)
+ ψ(ε)µ0

K uf = 0 inΩf

div
(uf

ε

)
= 0 inΩf

CS,f + div
(
CS,f

uf

ε

)
− div (DS(uf , pf , CS,f )∇CS,f ) = 0 inΩf

CX,f + div
(
CX,f

uf

ε

)
− div (DX(uf , pf )∇CX,f )− SX(uf , pf , CS,f ) = 0 inΩf

uf = U in (x) inΓin

CS,f = CS,in inΓin

CX,f = CX,in inΓin(
−pfI + µ0(∇uf

ε +∇uf

ε

t
)
)
· n = 0 inΓout

∇CS,f · n = 0 inΓout

∇CX,f · n = 0 inΓout

uf = 0 inΓw

(CS,fuf −DS(uf , pf , CS,f )∇CS,f ) · n = 0 inΓw

(CX,fuf −DX(u, p)∇CX,f ) · n = 0 inΓw

uf = A(uf , pf , CS,f ) (∆P − π (CS,f ))n inΓm

π (CS) = iRTCS

(CS,fuf −DS(uf , pf , CS,f )∇CS,f ) · n = BCS,f inΓm

(CX,fuf −DX(u, p)∇CX,f ) · n = 0 inΓm

(6.11)

Complementing the previous system, the following relations need to be considered:

A(u, p, CS) = (µ0(Rm +RX(u, p, CS)))
−1

RX(u, p, CS) = αX(u, p, CS)mX(u, p, CS)

αX(u, p, CS) = 45(1−ε(u,p,CS))
ρXa2ε3(u,p,CS)

K(u, p, CS) = a2ε3(u,p,CS)
150(1−ε(u,p,CS))2

ε(u, p, CS) = 1− mX(u,p,CS)
ρXAX

mX(u, p, CS) =
∫ t+dt

t
SX(u, p, CS)dt ≈ S̄X∆t

SX(u, p, CS) = θ(u, p)CX,in(J(u, p, CS)− Jcrit(u, p))
J(u, p, CS) = A(u, p, CS)(∆P − iRTCS)

Jcrit(u, p) =
√
J2
crit,br(u, p) + J2

crit,sh(u, p)

Jcrit,br(u, p) = 1.31
(

γ(u,p)D2
br

L

)1/3
ln
(

ϕX,m

ϕX,in

)
Jcrit,sh(u, p) = 0.078γ(u, p)

(
a4

L

)1/3
ln
(

ϕX,m

ϕX,in

)
DX(u, p) = Dbr +Dsh(u, p)
Dbr = kT

6πµ0a

Dsh(u, p) = 0.03γ(u, p)a2

θ(u, p) =


1 γ(u, p) < 214.29 s−1

1.2502− 1.1676 · 10−3γ(u, p) 214.29 < γ(u, p) < 985.71 s−1

0.0993 γ(u, p) > 985.71 s−1

γ(u, p) =
√
τ (u, p) : τ (u, p)

τ (u, p) = −pI + µ0(∇u
ε +∇u

ε
t)

ψ(ε) =

{
0 if ε = 1
1 if ε ̸= 1

DS(u, p, CS) = DS0
ε(u,p,CS)

1−ln (ε2(u,p,CS))

(6.12)

In the previous equations, Rm corresponds to the membrane’s intrinsic resistance, RX is the hy-
draulic resistance of the membrane due to the fouling layer, αX is the specific porous cake resistance
(approximated by the Kozeny-Carman equation), ε is the local porosity of the fouling cake, ρX is the
density of the colloidal particles, a is the radius of the colloidal particles, DS0 is the diffusivity of salt
in water, CX,in is the inlet concentration of the colloidal substance, J − Jcrit is the local net perme-
ate flux on the membrane, J is the total local permeate flux on the membrane, Jcrit is the critical
permeate flux through the porous cake, Jcrit,br is the critical permeate flux on a brownian diffusion
dominated crossflow filtration, Jcrit,sh is the critical flux due to shear induced diffusion critical flux,
θ is the deposition fraction, ϕX,m is the particle volumen fraction at the surface of the membrane,
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ϕX,in is the particle volume fraction at inlet, L is the channel length, k is the Boltzmann constant,
T is the absolute temperature, γ is the local shear rate, AX is the cell bottom face area, mX is the
accumulated fouling mass in a cell, and SX is the colloid deposition rate. Also, the multivariable
dependence of the porosity and permeability as shown in the system of equations 6.12 was ommitted
in equations 6.11 to shorten the notation.

6.0.7 Model 7: Biofouling in reverse osmosis channel

For the modelling of bacterial growth in the membrane, the most detailed model comes from the
work of Picioreannu et al. (Picioreanu, Van Loosdrecht, & Heijnen, 1998; Picioreanu, van Loos-
drecht, & Heijnen, 1998; Picioreanu, Van Loosdrecht, & Heijnen, 2001; Picioreanu, Vrouwenvelder,
& Van Loosdrecht, 2009), who coupled the transport equations with a cellular automata to represent
the bacterial growth criteria. In this case, we have three main concentrations with its own transport
equation: the usual sodium chloride CS , the bacterial substrate (i.e. the "food" for the bacteria) CA

and the bacterial colony CX . Its worth noting that bacteria need a variety of substrates to live and
proliferate, e.g. oxygen, organic matter, nitrogen organic compounds, etc. All of these species can be
considered in a holistic model, but it may be cumbersome to parametrize all of the properties needed
for each transport equation.
The assumptions for this model are:

• The system only experiences biofouling.

• We only model one substrate in the system, as it is the limiting reactive in bacterial proliferation
(Picioreanu et al., 2009).

• The biomass considered is a cumulae of different bacterial flora usually found on membranes,
and their parameters are those of (Picioreanu et al., 2009), in order to validate the results.
Different bacteria would require different parameters which need to be obtained empirically.

• The spacers are considered explicitly to study the effect of bacterial deposition and proliferation
in them.

• Places in which CX reaches a critical maximum value CX,max will experience bacterial prolif-
eration.

• Other condition that must be satisfied for the bacteria to grow is that the modulus γ =
√
τ : τ

of the shear rate τ is below the umbrale value γc.

• The bacteria that have deposited on the membrane are considered as a solid. Since the mesh
modification on each iteration may introduce cumbersome steps to the algorithm, the solid
condition of the newborn bacteria are considered through the use of an artificially high viscosity.

• The fluid is Newtonian and incompressible. The fluid density is ρ0, the viscosity is µ0(x, CX , τ ),
the salt diffusivity is DS and the substate diffusivity is DA.

• The membrane behavior is represented with the sorption-diffusion model, with the additional
simplification that the transmembrane pressure ∆P remains constant along the channel (i.e.,
the pressure drop along the channel effect is negligible to the membrane premeate flux).
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• The bacterial growth rate is represented with the Law of Monod.

• To identify in which cells bacteria will proliferate, the cellular automata of (Picioreanu, van Loos-
drecht, & Heijnen, 1998) will be considered. While not directly a partial differential equation,
the cell mark-up of bacterial growth with the cellular automata must occur at each iterative step
to have the updated viscosity field and bacterial concentrations available for the next iteration.

• The membrane behaves following the adsorption-diffusion model previously considered, with
the corresponding simplifications.

Following the previous assumptions, the problem is: find the field {u, p, CS , CA, CX} that satisfies
the following system,

ρ0uf,t + ρ0uf · ∇uf − div
(
−pfI + µ0(CX ,u, p)(∇uf +∇ut

f ))
)

= 0 inΩf

div (uf ) = 0 inΩf

(CS,f )t + div (CS,fuf )− div (DS∇CS,f ) = 0 inΩf

(CA,f )t + div (CA,fuf )− div (DA(γ)∇CA,f ) + YAXSCX(CA, CX) = 0 inΩf

(CX,f )t − SCX(CA, CX) = 0 inΩf

SCX(CA, CX) = µm
CA

KA+CA
CX

uf = U in (x) inΓin

CS,f = CS,in inΓin

CA,f = CA,in inΓin

CX,f = CX,in inΓin(
−pfI + µ0(CX ,u, p)(∇uf +∇ut

f )
)
· n = 0 inΓout

∇CS,f · n = 0 inΓout

∇CA,f · n = 0 inΓout

uf = 0 inΓw

(CS,fuf −DS∇CS,f ) · n = 0 inΓw

(CA,fuf −DA(γ)∇CA,f ) · n = 0 inΓw

uf · n = A (∆P − π (Cf )) inΓm

π (Cf ) = iRTCf

(CS,fuf −DS∇CS,f ) · n = BCS,f inΓm

(CA,fuf −DA(γ)∇CA,f ) · n = 0 inΓm

µ0(CX ,u, p) =

{
10−3 siCX < CX,c or γ(CX ,u, p) ≥ γc
104 siCX ≥ CX,c and γ(CX ,u, p) < γc

τ (CX ,u, p) = −pI + µ0(CX ,u, p)(∇u+∇ut)

γ(CX ,u, p) =
√
τ (CX ,u, p) : τ (CX ,u, p)

Additionally to this, the cellular automata has to be implemented to update the bacteria occupancy
(in this model, it means to update the viscosity µ0) and expansion on the cells after each time itera-
tion. To that effect, the rules of the automata for a given input concentration Cn

X and stress module
γn, we have for each element:

If CX ≥ C0 and γ < γc, then

1. The mass is divided in two parts. Half of the mass remains in the current element, and half of
it counts as a new biomass cell that needs to be placed in a different element. The viscosity
µ0 is updated to a high value (in this model, 104) and the concentration of the current cell is
halved.

2. A search for a free element for the new biomass cell is initiated. This entails the following:

(a) If there are more free neighbor cells around with CX = 0, then put the new cell in one of
them, randomly chosen with equal probability, the cell viscosity is updated to µ0 = 104,
the concentration CX of the new element is updated to equation INSERT, and the search
ends.

(b) Else, the new cell will displace one of its neighbor cells at a random. This displaced cell
will start a search for a free space around it (beginning of this loop) and the search for the
current cell will end.
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6.0.8 Model 8: Membrane distillation membrane as a domain for given
inlet-outlet profiles

As membranes are porous and have small scale pores, the velocity of vapor inside of the pores is
small enough to consider as low Reynolds regime (Re < 10) and apply Darcy’s law explicitly on the
membrane instead of a simplified one dimensional model. This example is to study how the water
vapor transports itself inside of the membrane, as well as the polarization effects on it. For this
model, we will consider the following assumptions:

1. The domain Ωm is a single channel with side walls Γw, an inlet which connects the membrane
with the feed channel Γin and an outlet which connects the membrane with the permeate
channel Γout.

2. The domain is seen in 2D (therefore the z-axis mixing effects are neglected).

3. The system is in steady state.

4. The fluid in the system is a dilute mixture of water vapor (1) in air (2).

5. The fluid is compressible (variable density ρ).

6. Based in the two previous points, the ideal gas mixture equation of state can be used to model
the fluid.

7. The fluid mixture’s diffusivity, heat capacity, viscosity and conductivity are given by correlations
that are functions of temperature, pressure and concentration.

8. The domain’s heat capacity and conductivity are approximated by a linear dependence between
the fluid and the membrane properties and the porosity of the medium.

9. The membrane is approximated as a homogeneous porous media, characterized by a porosity ε
and a permeability K.

10. The fluid regime is in low Reynolds regime (Re < 20), so the Darcy equation can be used.

11. The porosity of the medium can be calculated from geometrical considerations:

ε =
Void volume
Total volume

(6.13)

12. The permeability of the channel should be determined experimentally, but for regular geometries
as the ones used in this systems, a theoretical expression can be used. In this case, the Kozeny-
Carman equation is used:

K = Φ2 ε3d2s
150(1− ε)2

(6.14)

Where Φ is the sphericity of the particle forming the porous media.In 2D, the spacers are seen
as spherical particles, so Φ = 1. It is worth noting that this expression original range validity
is for creeping flow regime (Re < 1), after which the fluid begins to experiment friction losses.
In this case, the equation is valid.

13. The fluid enters Ωf with a known velocity and temperature profile. The inlet concentration
is given by the thermodynamic equilibrium of the water vapor at Γin, which is determined by
temperature.

14. The fluid leaves Ωf with a known velocity and temperature profile. The outlet concentration
is given by the thermodynamic equilibrium of the water vapor at Γout, which is determined by
temperature.
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Following the previous assumptions, the problem is: find the field {um, pm, Tm, Cm} that satisfies the
following system,

um = − K
µm(pm,Tm,Cm)

(∇pm − ρm (pm, Tm) g)

ρm (pm, Tm) = pm
R(Tm+273.15)

div
(
ρm (pm, Tm) um

ε

)
= 0 inΩm

umρm (pm, Tm) Ĉp,m (pm, Tm, Cm) · ∇Tm = div (keff (pm, Tm, Cm)∇Tm) inΩm

keff (pm, Tm, Cm) = (εkm (pm, Tm, Cm) + (1 − ε) ks (Tm))
div
(
Cm

um
ε

)
+ div (Jm (pm, Tm)) = 0 inΩm

Jm (pm, Tm) = −
Reff (pm,Tm)

R(Tm+273.15)
∇
(

Cm
ρm(pm,Tm)

pm

)
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Reff (pm, Tm)
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D
eff
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+

1− Cm
ρm(pm,Tm)
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eff
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inΓin

Deff
molec (pm, Tm) = ε

τ

 0.0018583(Tm+273.15)1.5
√

1
M1

+ 1
M2

pmσ2
12Ω12

 inΓin

Deff
Kn (Tm) =

dp
3δ

(
ε
τ

)2√ 8M2
πR(Tm+273.15)

inΓin

τ =
(2−ε)2

ε inΓin

µm (pm, Tm, Cm) =
µ1(Tm)

1+
ρm(pm,Tm)−Cm

Cm
ϕ12(Tm)

+
µ2(Tm)

1+
Cm
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Ĉp,m (pm, Tm, Cm) = Cm
ρm(pm,Tm)

Ĉp 1,m (Tm) +
(
1 − Cm

ρm(pm,Tm)

)
Ĉp 2,m (Tm) inΩm

km (pm, Tm, Cm) =
k1(Tm)

1+
ρm(pm,Tm)−Cm

Cm
ϕ12(Tm)

+
k2(Tm)

1+
Cm

ρm(pm,Tm)−Cm
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inΓin

ϕij (Tm) =

1+

√√√√ µi(Tm)
µj(Tm)

√
Mj
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2

√
8

(
1+

Mi
Mj

) inΓin

µi (Tm) = aµ,i + bµ,iTm

Ĉp i,m (Tm) = acp,i + bcp,iTm + ccp,iT
2
m + dcp,iT

3
m inΩm

ki (Tm) = ak,i + bk,iTm

ks (Tm) = ak,s + bk,sTm

Tm = Tin (r) inΓin

Cm = Cin (r) inΓin

pm = pin (r) inΓin

Tm = Tout (r) inΓout

Cm = Cout (r) inΓout

pm = pout (r) inΓout

−
(
ρm (pm, Tm) K

µm(pm,Tm,Cm)
∇pm

)
· n = 0 inΓw

(−keff (pm, Tm, Cm)∇Tm) · n = 0 inΓw

(Cmum + Jm (pm, Tm)) · n = 0 inΓw

(6.15)

6.0.9 Model 9: Membrane distillation coupled channels with membrane
as a surface and explicit spacers

Unlike reverse osmosis, the effect of the permeate channel on the membrane distillation system is
relevant for the process, as it can contribute to a major energy loss due to conduction, and an
increase in permeate flux resistance because of the diminishing temperature gradient. For this reason,
the effects of permeate channel width and inlet temperature an the efficiency of the process (both
thermal and flux-wise) can be studied with this model. The model is based on both (El Kadi,
Janajreh, & Hashaikeh, 2020) and (Lou, Vanneste, DeCaluwe, Cath, & Tilton, 2019)
The assumptions used in this model are:

• The modelled system consists of a feed and a permeate channel coupled by a membrane repre-
sented by a nonlinear set of equations for membrane distillation membranes.

• The system is in steady state, is two dimensional and has laminar flow.

• The configuration of the process is DCMD (both the feed and permeate domains are full of
seawater and highly purified water, respectively).

• The influence of temperature and salinity on the fluid density is negligible in both domains.
Therefore, the fluid in both channels can be treated as incompressible with the same density
ρ0. The same is considered for the viscosity µ0.

• Both specific heat capacity and thermal conductivity are functions of temperature and salt
concentration, given by equations INSERT ECS.

• The salinity S used in the previous items is derived from expression 2.2, considering there is
only one salt species dissolved in the water.

• The membrane is represented with the dusty gas model (Perfilov, 2018).
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• The fluid enters both channels with a known velocity profile, temperature and salt concentration.

• The fluid experiences free flow at the channel outlet.

Following the previous assumptions, the problem can be stated as: find the field {u∗, p∗, T∗, C∗}, ∗ =
f, p that satisfies the following system,

ρ∗u∗,t + ρ∗ div (u∗ ⊗ u∗) − div (τ∗ (u∗, p∗)) = 0 inΩ∗, ∗ = f, p

ρ∗Ĉp(T∗, C∗)T∗,t + ρ∗Ĉp,∗u∗ · ∇T∗ = div (k∗(T∗, C∗) (T∗, C∗)∇T∗) inΩ∗, ∗ = f, p

div (u∗) = 0 inΩ∗, ∗ = f, p
div (C∗u∗) − div (D∗∇C∗) = 0 inΩ∗, ∗ = f, p
u∗ = Uin∗ (r) inΓin∗, ∗ = f, p
C∗ = Cin∗ inΓin∗, ∗ = f, p(
−p∗I + µ∗

(
∇u∗ + ∇uT

∗
))

· n = −pout∗ · n inΓout∗, ∗ = f, p

∇C∗ · n = 0 inΓout∗, ∗ = f, p
u∗ = 0 inΓw∗, ∗ = f, p
(C∗u∗ − D∗∇C∗) · n = 0 inΓw∗, ∗ = f, p
uf · n = up · n inΓm
uf · n − Jv(T∗, p∗, C∗) = 0 inΓm

Jv(Tf , pf , Cf ) = ε
τ

 8dp
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√
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km(Tf )

δ
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Cfuf − Df∇Cf

)
· n =
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Cpup − Dp∇Cp
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· n inΓm(

Cfuf − Df∇Cf

)
· n = 0 inΓm

µv

(
Tf

)
= aµ,v + bµ,vTf

km(Tf ) = (1 − ε)ks(Tf ) + εkv(Tf )

kv

(
Tf

)
= ak,v + bk,vTf

ks

(
Tf

)
= ak,s + bk,sTf

Ĉp(T∗, C∗) = acp(T∗) + bcp(T∗)S(C∗) + ccp(T∗)S(C∗)2

acp(T∗) = acp1 + acp2T∗
bcp(T∗) = bcp1 + bcp2T∗
ccp(T∗) = ccp1 + ccp2T∗
k (T∗, C∗) = ak1 + ak2T∗ + (ak3 + ak4T )S(C∗)

∆Ĥvap(Tf ) = ahv + bhvTf

S(C∗) =
MWNaCl

ρ0
C∗

(6.16)

6.0.10 Model 10: Vacuum Membrane Distillation hollow fiber axisymmet-
ric model

In this model the case of a hollow fiber membrane distillation module is considered. Due to the
diversity of scales involved in the problem, both a small scale transport inside and in the vicinities
of a membrane fiber and a big scale on the module shell, the limiting length scale impedes modelling
all of the module due to computational restrictions. However, some approximations allow for the
representation of the fibers through the modelling of a single fiber. In this part, we develop a model
of a single hollow fiber, which can be subsequently used to represent the whole module.
The assumptions of the model are the following:

• The modelled system consists of a feed and a permeate channel coupled by a membrane repre-
sented by a nonlinear set of equations for membrane distillation membranes.

• The system is in steady state, is two dimensional and has laminar flow.

• The configuration of the process is DCMD (both the feed and permeate domains are full of
seawater and highly purified water, respectively).

• The influence of temperature and salinity on the fluid density is negligible in both domains.
Therefore, the fluid in both channels can be treated as incompressible with the same density
ρ0. The same is considered for the viscosity µ0.

• Both specific heat capacity and thermal conductivity are functions of temperature and salt
concentration, given by equations INSERT ECS.

• The salinity S used in the previous items is derived from expression 2.2, considering there is
only one salt species dissolved in the water.

• The membrane is represented with the dusty gas model (Perfilov, 2018).

• The fluid enters both channels with a known velocity profile, temperature and salt concentration.

• The fluid experiences free flow at the channel outlet.
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The assumptions for this model are:

1. The feed solution is composed of sodium chloride and water, and is introduced on the lumen
(inner part) of the fibers. The fibers are encased in a shell which is subject of a vacuum,
drawing the permeate from the membrane to outside as a vapor, to then be condense outside
of the module. The reverse configuration can be also used, but the chosen here has the highest
permeate flux (Schofield, 1989).

2. The module inlet distributes the feed solution to each fiber uniformly.

3. The vacuum pressure along the module is constant and unaffected by the number of fibers in
the module.

4. The heat loss of the vacuum to the environment is negligible. Therefore, summed up with
the previous assumption, the inmediate outer environment of each fiber is homogeneous and
constant (both the permeate side pressure and temperatures Pp and Tp, respectively) .

5. The membrane is porous and highly hydrophobic, and its transport is modeled by a combination
of viscous and Knudsen transport (Schofield, 1989). The molecular diffusion is not present, as
in the VMD all air was extracted from the membrane pores, leaving only the water vapor inside
it.

6. The system has a laminar flow, and is in steady state.

7. The fluid is incompressible with density ρ0 and constant viscosity µ0.

8. The outlet condition for all variables is an outflow boundary condition ("free" flow).

9. The heat capacity of the fluid Ĉp,f is given by expression 2.30.

10. The thermal conductivity of the saltwater is given by expression 2.22.

11. The salinity S used in the previous items is derived from expression 2.2, considering there is
only one salt species dissolved in the water.

Then, the problem can be stated as: find the field {uf , pf , Tf , Cf} that satisfies the following
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system,



ρ0 div (uf ⊗ uf ) − div (τf (uf , pf )) = 0 inΩf

τf (uf , pf ) = −pfI + 2µ0ef (uf )

ef (uf ) = 1
2

(
∇uf + ∇uT

f

)
div (uf ) = 0 inΩf

ufρ0Ĉp,f · ∇Tf − div (kf∇Tf ) = 0 inΩf

div (Cfuf ) − div (D∇Cf ) = 0 inΩf

uf = Uin (r) inΓin

Tf = Tin inΓin

Cf = Cin inΓin(
−pfI + µ0

(
∇uf + ∇uT

f

))
· n = −poutn inΓout

∇Tf · n = 0 inΓout

∇Cf · n = 0 inΓout

ρ0uf · n = J1
v (Tf ) inΓm

uf · t = 0 inΓm(
Ĉp,fTfuf − kf∇Tf

)
· n = J2

v (Tf ) inΓm

(Cfuf − D∇Cf ) · n = 0 inΓm

J1
v (Tf ) = ε

τ

(
8rp
3δ

√
1

2πRMwTf
+

r2p
8µv(Tf )δ

Pm
RTf

)((
P 0(Tf ) − Pp

)
Mw

)
J2
v (Tf ) = J1

v (Tf )∆Ĥvap(Tf ) +
km
δ (Tf − Tp)

µv (Tf ) = a1 +
1

a2 + a3Tin + a4T 2
in

or A1 + A2Tin + A3T
2
in + A4T

3
in

P 0(T ) = exp
(
ap0 − bp0

Tfm+cp0

)
or b1 + b2Tfm + b3T

2
fm + b4T

3
fm

km(Tf ) = (1 − ε)ks(Tf ) + εkv(Tf )
τ = 1

ε
∆H(T ) = ahv1 + ahv2(Tfm + 273.15)
km
δ (Tfm − Tpm) = 0.1 J2

v (T )

Here, Jv is the vapor flux that goes through the membrane, ∆Ĥvap is the vaporization enthalpy, δ is
the membrane thickness, Tp and Pp are the permeate side temperature and pressure respectively, dp
is the pore radius, µv is the water vapor viscosity, γ is the activity coefficient of the feed solution P 0

is the vapor pressure of water, ε is the porosity of the membrane, τ is the tortuosity of the pore, MWi

is the molar weight of component i, km is the membrane thermal conductivity, ks is the membrane
material conductivity and kv is the water vapor conductivity.

In the above, u = (ux, uy) , p, θ and T represent the fluid velocity, pressure, molar concentration
profile and fluid temperature, respectively. The velocity at the inlet is considered to be of the Berman
type (Berman, 1953) in the sense that for x = 0 and for all y ∈ [−d/2, d/2], we have a minimum salt
concentration, maximum temperature at the border and maximum membrane permeability. More
precisely, we define uin as:

uin · n =

(
u0 − vw

2x

d

)(
3

2
(1− λ2)

)[
1− Re

420

(
2− 7λ2 − 7λ4

)]
,

uin · t = vw

[
λ

2
(3− λ2)− Re

280
λ(2− 3λ2 + λ6)

]
,

where Re =
vw(d/2)

µf/ρf
, vw = J1

v (Tfm)
∣∣
x=0

and λ = 2y/d.

The parameters for the simulation are given in the following table(Sharqawy, Lienhard, & Zubair,
2010; Zhang, Peng, Ji, & Wang, 2016; Carro, Mora, & Vellojin, 2022).
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Table 6.1: Parameters for the vacuum membrane distillation model

Parameters Meaning Values Units
uin Inlet mean fluid velocity 0.73 ms−1

kv Vapor conductivity 0.026 Wm−1K−1

θin Inlet mean salt concentration 35 kgm−3

Tin Inlet mean fluid temperature 50 ◦C
Df Salt diffusivity 1.5 · 10−9 m2s−1

τ Pores tortuosity 2.0 −
ρf Fluid density 998.2 kgm−3

rp Mean pore radius 0.2 · 10−6 m

Ĉp,f Water specific heat 4182 J kg−1K−1

δ Membrane thickness 0.45 · 10−3 m
ϵ Membrane porosity 0.5 −
R Gas ideal constant 8.31 Jmol−1K−1

ks Membrane conductivity 0.256 Wm−1K−1

Mw Water molecular weight 18 · 10−3 kgmol−1

µv Water viscosity 1.13 · 10−5 Pa s
pp Permeate pressure 3000 Pa
L Channel length 0.25 m
k Water conductivity 0.600 Wm−1K−1

km Mean conductivity 0.141 Wm−1K−1

d Channel diameter 0.7 · 10−3 m

6.1 Considerations for the further formulation of models
Although the previous models cover with detail the majority of the modelling proposed by the CFD
community in the last thirty years, there are always new areas of study that hasn’t been covered yet,
and also many simplifications that in a close future may vanish and be considered in new problems.
For these reasons, the following list contains some of the remaining main ideas that in my judgement
are relevant on the creation of new models.
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